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ABSTRACT

Context. Parallel analysis of the large-scale morphology and local environment of matched active and control galaxy samples plays
an important role in studies of the fueling of active galactic nuclei.
Aims. We carry out a detailed morphological characterization of a sample of 35 Seyfert galaxies and a matched sample of inactive
galaxies in order to compare the evidence of non-axisymmetric perturbation of the potential and, in the second part of this paper, to
be able to perform a multicomponent photometric decomposition of the Seyfert galaxies.
Methods. We constructed contour maps, BVRCIC profiles of the surface brightness, ellipticity, and position angle, as well as colour
index profiles. We further used colour index images, residual images, and structure maps, which helped clarify the morphology of the
galaxies. We studied the presence of close companions using literature data.
Results. By straightening out the morphological status of some of the objects, we derived an improved morphological classification
and built a solid basis for a further multicomponent decomposition of the Seyfert sample. We report hitherto undetected (to our
knowledge) structural components in some Seyfert galaxies – a bar (Ark 479), an oval/lens (Mrk 595), rings (Ark 120, Mrk 376), a
nuclear bar and ring (Mrk 352), and nuclear dust lanes (Mrk 590). We compared the large-scale morphology and local environment of
the Seyfert sample to those of the control one and found that (1) the two samples show similar incidences of bars, rings, asymmetries,
and close companions; (2) the Seyfert bars are generally weaker than the bars of the control galaxies; (3) the bulk of the two samples
shows morphological evidence of non-axisymmetric perturbations of the potential or close companions; (4) the fueling of Seyfert
nuclei is not directly related to the large-scale morphology and local environment of their host galaxies.

Key words. galaxies: fundamental parameters – galaxies: Seyfert – galaxies: structure – techniques: image processing –
techniques: photometric

1. Introduction

The generally accepted active galactic nucleus (AGN) model re-
quires gas accretion onto a supermassive black hole (SMBH).
There are a number of fueling mechanisms of different relative
importance depending on mass accretion rates and spatial scales.
Major mergers are most commonly involved to explain the high
accretion rates of the most luminous quasars; the more accre-
tion rate decreases, the higher the number of efficient mech-
anisms (e.g., dynamical friction, viscous torques). At Seyfert

� Based on observations made with the 2-m telescope of the Institute
of Astronomy and National Astronomical Observatory, Bulgarian
Academy of Sciences.
�� Based on observations made with ESO Telescopes at the La Silla
or Paranal Observatories under programmes 69.D-0453(B), 079.B-
0196(A), 081.B-0350(B), 71.B-0202(B), and 077.B-0356(B).
��� Based on observations made with the NASA/ESA Hubble Space
Telescope, obtained from the data archive at the Space Telescope
Science Institute. STScI is operated by the Association of Universities
for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
† Appendices are only available in electronic form at
http://www.aanda.org

(Sy) luminosities, bars, tidal interactions, and minor mergers be-
come important (see, e.g., the reviews of Martini 2004; Jogee
2006). Bars have long been considered an efficient mechanism
for inward gas transport down to about 1 kpc (Schwarz 1984;
Shlosman et al. 1989; Piner et al. 1995); among the possibili-
ties for further driving the gas within the gravitational influence
of the central source are nested bars (Shlosman et al. 1989) and
central spiral dust lanes (Regan & Mulchaey 1999). The rela-
tion between galaxy interactions and the onset of nuclear activ-
ity is founded upon the key studies of Toomre & Toomre (1972)
and Gunn (1979). Minor mergers could induce gas inflow to the
nuclear regions (e.g., Hernquist & Mihos 1995). Finding clear
evidence of a minor merger is generally hard, since the sinking
satellite detectability depends on the stage and geometry of the
merger and on the parameters of the galaxies involved; e.g., the
minor merger is hardly recognizable in its final stages (Walker
et al. 1996). Numerical simulations show that (minor) merg-
ers, together with tidal interactions, could induce tails, bridges,
shells, bars, and various types of disturbed spiral structure and
asymmetries (e.g., Toomre & Toomre 1972; Hernquist & Quinn
1989; Mihos et al. 1995; Hernquist & Mihos 1995). Thus,
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asymmetries have often been associated with mergers (e.g.,
Conselice et al. 2000; Conselice 2003; De Propris et al. 2007).

The question of statistical differences between Sy and inac-
tive galaxies considering non-axisymmetric perturbations of the
potential is somewhat controversial. It is a prevalent view that
neither bars (e.g., Mulchaey & Regan 1997), companions (e.g.,
De Robertis et al. 1998; Schmitt 2001), minor mergers (e.g.,
Corbin 2000), nested bars (Erwin & Sparke 2002), nor nuclear
dust spiral arms (Martini et al. 2003) are specific signatures of
Sy galaxies. Some studies, however, prompt an excess of bars
(e.g., Laine et al. 2002), outer rings (Hunt & Malkan 1999), com-
panions (e.g., Rafanelli et al. 1995), and, considering early type
galaxies, circumnuclear features (Xilouris & Papadakis 2002)
and dust (e.g., Simões Lopes et al. 2007) in Sy galaxy sam-
ples. Taniguchi (1999) even suggested (minor) mergers as a uni-
fied formation mechanism of (low-luminosity) AGNs in the local
Universe.

It is now believed that the SMBH and its host galaxy have
coevolved. A relation between SMBH mass and bulge lumi-
nosity was first established for inactive galaxies (Kormendy &
Richstone 1995) and then extended to active galaxies (Laor
1998; Wandel 1999). Similar relations link SMBH mass with
bulge velocity dispersion and light concentration (for a review
see Ferrarese & Ford 2005). In particular, the accurate photo-
metric separation of the bulge from the other galactic compo-
nents is of utmost importance for studying the “SMBH mass –
bulge luminosity” relation in depth. The bulge luminosity ob-
tained by bulge-disk decomposition tends to be systematically
lower (Wandel 2002) and leads to less scatter of the above re-
lation (e.g., Marconi & Hunt 2003; Erwin et al. 2004), than the
luminosity estimate based on the empirical relation between the
bulge-to-total luminosity ratio (B/T) and the Hubble stage (T ,
Simien & de Vaucouleurs 1986).

Generally, the way to have a precise differentiation of the
flux of the individual components is photometric decomposi-
tion, which, in its simplest form, uses analytical functions for
the radial surface brightness (SB) profiles of bulge and disk.
Typically the SB distribution of disks is satisfactorily fitted by
an exponential function (Freeman 1970). The Sérsic law (or r1/n,
Sérsic 1968) has supplanted the r1/4 law (de Vaucouleurs 1948)
in the approximation of bulge SB distribution since the works
of Andredakis & Sanders (1994) and Andredakis et al. (1995).
Bulges of early-type spirals, however, appear more exponential
than previously assumed (Balcells et al. 2003; Laurikainen et al.
2005). Furthermore, lower values of B/T than in earlier stud-
ies have been reported (Laurikainen et al. 2005, 2006, 2007;
Weinzirl et al. 2009). The reason for the observed lower mean
values of n and B/T is most likely related to the multicomponent
decomposition used (Laurikainen et al. 2005, 2007): the omis-
sion of bars (and ovals/lenses) leads to modifying bulge (mostly)
and disk parameters and furthermore to B/T inflation (see also
Gadotti 2008; Weinzirl et al. 2009). Therefore, the way to have
precise parameter estimates as a result of decomposition is to
take all significant components in the galaxy under considera-
tion into account, as well as to choose the right functional form
for each of them.

Detailed morphological characterization, i.e., disclosure of
the features present, is important in the context of AGN fuel-
ing mechanisms, correlations among structural parameters, and
galaxy morphological classification. The last one named should
not be overlooked, keeping the correlation of a great deal of pa-
rameters with T in mind. Two basic kinds of approaches can
be discerned: detailed case-by-case research on relatively small
galaxy samples, which can adequately reveal and model the

components present but would be an arduous task for a great
number of objects, and studies of large samples in an automated
manner, which would lead to results of higher statistical weight
but could hardly take all structures in the individual galaxies into
account (see also Gadotti 2008).

Our study is of the first type. Its aim is to explore the mor-
phological features related to AGN fueling mechanisms and the
relations among the structural parameters, including the “SMBH
mass – bulge luminosity” relation, involving detailed morpho-
logical characterization and SB decomposition of a sample of
Sy galaxies. A parallel discussion of a matched sample of inac-
tive galaxies is presented to study the eventual differences in the
large-scale morphology and local environment of the Sy and in-
active galaxies. The morphological characterization is based on
scrutinizing various types of images, maps, residuals, and pro-
files. The results of a multicomponent SB decomposition will be
presented in a companion paper.

The paper is organized as follows. Sample selection is
presented in Sect. 2. Observations and primary data reduction
are outlined in Sect. 3. Surface photometry steps are followed
through in Sect. 4. Bar characterization is described in Sect. 5.
Section 6 presents the surface photometry outputs. The local en-
vironment of the galaxies is commented on in Sect. 7. A dis-
cussion follows in Sect. 8. A summary of our results is given in
Sect. 9. A set of contour maps and profiles of the Sy galaxies is
presented in Appendix A. Individual Sy galaxies are discussed
in Appendix B.

Throughout the paper the linear sizes and projected linear
separations in kpc have been calculated using the cosmology-
corrected scale given in NASA/IPAC Extragalactic Database
(NED; H0 = 73 km s−1 Mpc−1, Ωmatter = 0.27, Ω vacuum = 0.73,
Spergel et al. 2007).

2. Sample selection

We selected Sy galaxies with reverberation-based black hole
masses compiled by Ho (1999) and updated by Peterson et al.
(2004), as well as relatively poorly studied Sy galaxies regarding
morphological characterization and multicomponent SB profile
decomposition from Véron-Cetty & Véron (1998), on which we
imposed the following constraints:

– redshift z< 0.1, so that the galaxies are close enough to pro-
vide spatial resolution adequate for a proper morphological
characterization and multicomponent SB decomposition;

– galaxy isophotal (at 25 B mag arcsec−2) diameters larger
than 20′′, i.e., well-resolved host galaxies;

– inclination less than 70◦ to avoid highly inclined galaxies,
for which structures can be difficult to recognize;

– suitable for observation at the Rozhen National
Astronomical Observatory (NAO), Bulgaria.

The Sy sample consists of 35 galaxies. A control sample of in-
active galaxies was selected from the Center for Astrophysics
(CfA) Redshift Survey (Huchra et al. 1983, 1995) to compare
their morphology and environment to those of the Sy sample
galaxies. The inactive galaxies were matched on a one-to-one
basis to the Sy galaxies in T , radial heliocentric velocity Vr,
absolute B-band magnitude MB

abs, and ellipticity ε. For two of
the Sy galaxies (III Zw 2 and Mrk 1513, among the most dis-
tant ones), we could not find any appropriate counterparts in
the CfA Redshift Survey, so we selected their matched galax-
ies from the Sloan Digital Sky Survey (SDSS, York et al.
2000). MB

abs of an inactive galaxy was matched to MB
abs +0.m5
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Fig. 1. Distribution of T assigned by this
study for the Sy (black columns) and control
(empty columns) sample. The bins shown
correspond to T = –2, T = 0, 1, T = 2, 3, and
T = 4. The arrow designates the median
value of the two samples.

Fig. 2. Distribution of Vr for the Sy sample
(black columns, taken from NED) and the
control one (empty columns, taken from the
CfA Survey). The bin size is 5000 km s−1.
The difference between the median values
of the two samples is ≈ 150 km s−1, thus,
the arrows, designating these values, appear
blended.

Fig. 3. Distribution of MB
abs for the Sy sam-

ple (black columns, estimated on the basis
of Slavcheva-Mihova & Mihov, in prep.) and
the control one (empty columns, estimated
on the basis of the CfA Survey). The bin
size is 1m. The left and right arrows desig-
nate the median values of the control and Sy
(plus 0.m5, see text) sample, respectively.

of an Sy galaxy and the median of these values is given be-
low and plotted in Fig. 3. The value of 0.m5 is a mean one,
based on our preliminary decomposition results for the contri-
bution of the AGNs to the total Sy galaxy magnitudes. The me-
dian values of the matched parameters of the Sy/control sam-
ple are T = 0/0, Vr = 8089/7934 km s−1, MB

abs =−20.m88/−21.m03,
and ε = 0.19/0.20. Their distribution is shown in Figs. 1–4.

Basic information about the sample galaxies is given in
Tables 1 and 2. The morphological type is taken from the Third
Reference Catalogue of Bright Galaxies (RC3, de Vaucouleurs
et al. 1991). If there is no classification in RC3 or it is doubtful,
we take the morphological type given in NED; if none of the
above types exists, we list the one in HyperLeda1 (Paturel et al.
2003) or SIMBAD.

3. Observations and primary data reduction

The Sy sample observations were performed at NAO with
the 2-m Ritchey-Chrétien telescope equipped with 1024× 1024
Photometrics AT200 CCD camera (CCD chip SITe SI003AB
with a square pixel size of 24 μm that corresponds to
0.′′309 on the sky) or with 1340× 1300 Princeton Instruments
VersArray:1300B CCD camera (CCD chip EEV CCD36-40 with
a square pixel size of 20 μm that corresponds to 0.′′258 on the
sky). Two galaxies were observed employing a two-channel
focal reducer (Jockers et al. 2000) and 512× 512 Princeton
Instruments VersArray:512B CCD camera (CCD chip EEV
CCD77-00 with a square pixel size of 24 μm, which corresponds
to 0.′′884 on the sky). Standard Johnson-Cousins BVRCIC filters
were used. For a couple of objects we were not able to obtain
images of good quality and used archival data. The observation
log (including archival data) is presented in Table 3.

Multiple frames were acquired for all objects of interest.
Standard fields were observed two or three times each night at
different airmass values not exceeding X = 2. The galaxy fields
were observed in the same airmass range. Zero-exposure frames
were taken regularly during the observing runs, and IC frames
of relatively blank night sky regions were taken for fringe frame

1 http://leda.univ-lyon1.fr

composition. Flat field frames were taken in the morning and/or
evening twilight. Both flat fields and IC blank frames were offset
from one exposure to the next, so that stars could be filtered out.

The primary reduction of the data, as well as most of the sur-
face photometry, was performed by means of packages within
the ESO-MIDAS2 environment. The mean bias level was esti-
mated using the virtual pre-scan bias section. The median of the
zero-exposure frames was used to remove the residual bias pat-
tern. Dark current correction was not needed. The median of the
normalized flat field frames in each passband was used for flat
fielding. Median combined blank IC frames were used for fringe
correction; defringing increases the signal-to-noise ratio (S/N)
in the outer galaxy regions and allows better estimation of sky
background. Cosmic ray events and bad pixels were replaced by
a local median value (FILTER/COSMIC command). All images of
a particular object were aligned to match the highest S/N frame,
generally the RC one, and combined to obtain single BVRCIC im-
ages. Primary reduction refers both to galaxy and standard field
frames.

To construct the point spread function (PSF) of the combined
frames, we picked up a number of bright, isolated, and unsatu-
rated stars, fitted a 2D Moffat profile (Moffat 1969) to them, and
weight-averaged the full widths at half maximum (FWHMs) and
power-law indices, β, in each passband. The minimal FWHM
(over all passbands) and the corresponding β are listed in
Table 3. If β→∞, then Moffat profile→Gaussian (Trujillo et al.
2001), and if β = 1, then Moffat profile≡Lorentzian.

We used archival data for the control sample. For about half
of the galaxies CCD data from the SDSS, the European Southern
Observatory (ESO), NED, and the Isaac Newton Group of
Telescopes (ING) image archives were used. SDSS uses a ded-
icated 2.5-m telescope and a large-format CCD camera (Gunn
et al. 1998, 2006) at the Apache Point Observatory in New
Mexico to obtain images in five broad bands (ugriz, Fukugita
et al. 1996). The imaging data were processed by a photomet-
ric pipeline (Lupton et al. 2001; Stoughton et al. 2002). The
primary reduction of the data from the ING and ESO archives

2 The European Southern Observatory Munich Image Data Analysis
System.
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Table 1. Characteristics of the Sy galaxy sample in order of increasing right ascension.

Galaxy Other names zN SyN Morph. typeRC3 Morph. typeour B R A C Any

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Mrk 335 PG 0003+199 0.025785 (63) 1.2 S0/aN SA0 pec ◦ ◦ • ◦ •
III Zw 2 Mrk 1501, PG 0007+106 0.089338 1.2 ESim SA0 pec ◦ ◦ • • •
Mrk 348 NGC 262, UGC 00499 0.015034 (13) 2 SA(s)0/a: SA(s)a ◦ • • • •
I Zw 1 Mrk 1502, PG 0050+124 0.061142 (67) 1 SaN SA(s)ab ◦ ◦ • • •
Mrk 352 CGCG 501–058 0.014864 (20) 1 SA0 SA0 ◦ ◦ ◦ ◦ ◦
Mrk 573 UGC 01214 0.017179 (37) 2 (R)SAB(rs)0+: (R)SAB(r)0 • • ◦ • •
Mrk 590 NGC 863, UGC 01727 0.026385 (40) 1.2 SA(s)a: SA(s)a ◦ ◦ ◦ • •
Mrk 595 CGCG 414–040 0.026982 (80) 1.5 SaN SAB0/a • ◦ ◦ ◦ •
3C 120 Mrk 1506, UGC 03087 0.033010 (30) 1 S0: SA0 pec ◦ ◦ • ◦ •
Ark 120 Mrk 1095, UGC 03271 0.032713 (57) 1 Sb pecN SA(r)0 pec ◦ • • ◦ •
Mrk 376 IRAS 07105+4547 0.055980 (23) 1.5 S0:N (R′)SAB(r)a • • ◦ ◦ •
Mrk 79 UGC 03973 0.022189 (27) 1.2 SBb SB(rs)b • • • ◦ •
Mrk 382 CGCG 207–005 0.033687 (53) 1 SBcSim (R′)SAB(r)bc • • ◦ ◦ •
NGC 3227 UGC 05620 0.003859 (10) 1.5 SAB(s)a pec SAB(s)a pec • ◦ • • •
NGC 3516 UGC 06153 0.008836 (23) 1.5 (R)SB(s)00: (R)SAB(r)0 • • ◦ ◦ •
NGC 4051 UGC 07030 0.002336 (4) 1.5 SAB(rs)bc SAB(s)bc • ◦ • ◦ •
NGC 4151 UGC 07166 0.003319 (10) 1.5 (R′)SAB(rs)ab: (R′)SB(rs)ab • • ◦ • •
Mrk 766 NGC 4253, UGC 07344 0.012929 (53) 1.5 (R′)SB(s)a: (R′)SAB(s)ab • • • ◦ •
Mrk 771 Ark 374, PG 1229+204 0.063010 (153) 1 SpiralN (R′)SAB0/a pec • • • ◦ •
NGC 4593 Mrk 1330 0.009000 (127) 1 (R)SB(rs)b (R′)SAB(rs)b • • • • •
Mrk 279 UGC 08823, PG 1351+695 0.030451 (83) 1.5 S0 (R)SAB0 pec • • • • •
NGC 5548 Mrk 1509, UGC 09149 0.017175 (23) 1.5 (R′)SA(s)0/a SA0/a pec ◦ ◦ • • •
Ark 479 CGCG 107–010 0.019664 (133) 2 S0HL SAB(s)ab • ◦ ◦ • •
Mrk 506 CGCG 170–020 0.043030 (40) 1.5 SAB(r)a (R)SA(r)0/a ◦ • ◦ • •
3C 382 CGCG 173–014 0.057870 (160) 1 . . . SA0 pec ◦ ◦ • ◦ •
3C 390.3 VII Zw 838 0.056100 1 S0:Sim SA0 ◦ ◦ ◦ • •
NGC 6814 MCG –02–50–001 0.005214 (7) 1.5 SAB(rs)bc SAB(rs)bc • • ◦ ◦ •
Mrk 509 IRAS 20414–1054 0.034397 (40) 1.2 . . . SA0 ◦ ◦ ◦ ◦ ◦
Mrk 1513 II Zw 136, PG 2130+099 0.062977 (100) 1 (R)Sa (R′)SA(s)a ◦ • ◦ ◦ •
Mrk 304 II Zw 175, PG 2214+139 0.065762 (27) 1 . . . SA0 ◦ ◦ ◦ ◦ ◦
Ark 564 UGC 12163 0.024684 (67) 1.8 SB (R′)SB(s)b • • ◦ ◦ •
NGC 7469 Mrk 1514, UGC 12332 0.016317 (7) 1.2 (R′)SAB(rs)a (R′)SAB(rs)a • • ◦ • •
Mrk 315 II Zw 187 0.038870 (83) 1.5 E1 pec? SA(s)0/a pec ◦ ◦ • • •
NGC 7603 Mrk 530, UGC 12493 0.029524 (73) 1.5 SA(rs)b: pec SA0 pec ◦ ◦ • ? •
Mrk 541 CGCG 408–001 0.039427 (40) 1 E/S0Sim (R)SA(r)0 ◦ • • ◦ •

Notes. Columns 7–11 reveal the presence of (7) bar, oval or lens; (8) inner and/or outer (pseudo-)ring; (9) asymmetry; (10) companion (? denotes
an anomalous redshift system); (11) any of the previous features. The superscripts N/HL/Sim stand for NED/HyperLeda/SIMBAD.

was performed as described above. The data taken through NED
were reduced by the corresponding authors. Digitized Palomar
Observatory Sky Survey (DSS) I, II, and digitized ESO-Uppsala
Survey (Lauberts & Valentijn 1989) data were used for the rest
of the inactive galaxies. Data sources of the inactive galaxies are
listed in Table 2. The supervening data reduction described be-
low concerns both galaxy samples, while calibration is applied
only to the Sy galaxies.

4. Surface photometry

4.1. Adaptive filtering

To increase the S/N of the galaxy images we applied the adap-
tive filter technique (Lorenz et al. 1993), implemented in the
Astrophysical Institute of Potsdam (AIP) package. The task uses
H-transform to calculate the local S/N at each point of the im-
age and determines the size of the impulse response of the filter
at this point. Thus, adaptive filter extensively smooths sky back-
ground, to a lesser extent galaxy outskirts, and does not treat the
highest resolution features.

Adaptive filter has many advantages over the other most
commonly used filters in surface photometry of galaxies

(Slavcheva-Mihova et al. 2005); furthermore, it introduces no
systematic errors (Capaccioli et al. 1988; Tamm & Tenjes 2001).

4.2. Contaminating feature cleaning

Aside from intrinsic structures, like dust lanes, star formation re-
gions, etc., isophotal shape can also be modified in a systematic
fashion by contaminating features: contaminating objects (fore-
ground stars or projected/companion galaxies) or other features
(diffraction spikes from bright stars, scattered light, meteor or
satellite trails, etc.). The closer the contaminating feature to the
galaxy core, the more carefully we treated it.

We used the following techniques to clean out contaminating
features: interpolation, PSF subtraction, symmetric replacement,
deblending, and annular cleaning.

Interpolation. This is the technique used most often. The al-
gorithm in use (within the AIP package) generates masks cov-
ering the contaminating features and iteratively fills the back-
ground inside the masks by interpolating the background from
the regions surrounding them. For each galaxy we generated one
set of masks for all passbands (generally using the RC image),
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Table 2. Characteristics of the inactive galaxy sample.

Sy galaxy Inactive galaxy Source Telescope zN Morph. typeRC3 Morph. typeour B R A C Any

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)(11)(12)

Mrk 335 IC 5017 ESO VLT-U4 0.025174 (87) (R)SAB(rs)00 (R)SB(r)0 • • ◦ ◦ •
III Zw 2 2MASX J01505708+0014040 SDSS 2.5-m 0.082226 (102) S0/aHL SA0 ◦ ◦ ◦ ◦ ◦
Mrk 348 NGC 2144 DSS+E STs 0.015924 (R′)SA(rs)a: (R′)SA(rs)a pec ◦ • • • •
I Zw 1 ESO 155– G 027 DSS+E STs 0.062110 (334) (R′1?)SB(rs)abN SB(r)b • • • • •
Mrk 352 2MASX J04363658–0250350 NED CFHT 0.015564 (163) S0N SA0 ◦ ◦ ◦ • •
Mrk 573 ESO 542– G 015 SDSS 2.5-m 0.018570 (90) S0(r):Sim SAB0 • ◦ ◦ ◦ •
Mrk 590 NGC 4186 SDSS 2.5-m 0.026292 (17) SA(s)ab: SA(rs)a ◦ • • ◦ •
Mrk 595 2MASX J00342513–0735582 NED CFHT 0.026218 (150) SB0/aN SAB0 • ◦ ◦ • •
3C 120 ESO 202– G 001 DSS+E STs 0.033620 (87) SAB(r)00: pec SA0 pec ◦ ◦ • ◦ •
Ark 120 IC 5065 ESO 3.6-m 0.032689 (47) SB0: pec SAB0 pec • ◦ • • •
Mrk 376 ESO 545– G 036 ESOa Dutch 0.057166 (97) (R′?)SA(s)aN (R′)SA(s)a pec ◦ • • ◦ •
Mrk 79 ESO 340– G 036 DSS+E STs 0.021722 (83) SB(r)b SB(r)b • • • ◦ •
Mrk 382 ESO 268– G 032 DSS+E STs 0.034657 (33) SAB(s)bcN SAB(s)bc • ◦ ◦ ◦ •
NGC 3227 IC 5240 ESO NTT 0.005886 (24) SB(r)a SB(r)a • • ◦ ◦ •
NGC 3516 ESO 183– G 030 ESO 2.2-m 0.008966 (107) SA0− pec? SA0 ◦ ◦ ◦ • •
NGC 4051 IC 1993 ESO 3.6-m 0.003602 (10) (R′)SAB(rs)b (R′)SA(s)bc ◦ • ◦ ◦ •
NGC 4151 NGC 2775 SDSS 2.5-m 0.004516 (17) SA(r)ab SA(s)ab ◦ ◦ ◦ • •
Mrk 766 UGC 6520 SDSS 2.5-m 0.012255 (133) SB? (R′)SB(rs)ab • • ◦ • •
Mrk 771 ESO 349– G 011 DSS+E STs 0.063821 (93) SB(r)aN SB(r)a • • ◦ ◦ •
NGC 4593 NGC 4902 NED CTIO 0.9-m 0.008916 (17) SB(r)b SB(r)b • • • • •
Mrk 279 ESO 324– G 003 DSS+E STs 0.029073 (R)SA(r)0+,N SA(r)0 ◦ • ◦ ◦ •
NGC 5548 NGC 466 DSS+E STs 0.017552 (87) SA(rs)0+: SA(s)0/a ◦ ◦ • ◦ •
Ark 479 ESO 297– G 027 ESO NTT 0.021221 (33) SA(rs)b: SA(rs)ab ◦ • ◦ ◦ •
Mrk 506 ESO 510– G 048 DSS+E STs 0.044991 (103) SA(s)0/a: pec SA(s)0/a pec ◦ ◦ • • •
3C 382 ESO 292– G 022 DSS+E STs 0.056119 (107) SA0− pec: SA0 ◦ ◦ ◦ ◦ ◦
3C 390.3 ESO 249– G 009 DSS+E STs 0.054534 (81) (R)SB0+ :N (R)SAB0 • • ◦ ◦ •
NGC 6814 NGC 7421 ING JKT, WHT 0.005979 (29) SB(rs)bc SB(rs)bc pec • • • • •
Mrk 509 ESO 147– G 013 DSS+E STs 0.035485 (93) S00: pec SA0 pec ◦ ◦ • ◦ •
Mrk 1513 2MASX J14595983+2046121 SDSS 2.5-m 0.061600 (200) . . . SA(s)a ◦ ◦ • ◦ •
Mrk 304 ESO 292– G 007 DSS+E STs 0.068381 (100) S0N SA0 ◦ ◦ ◦ • •
Ark 564 ESO 552– G 053 DSS+E STs 0.024147 (90) SB(r)b (R′)SB(r)b • • • ◦ •
NGC 7469 NGC 897 DSSb +E STs 0.015868 (53) SA(rs)a SA(rs)a ◦ • ◦ • •
Mrk 315 ESO 423– G 016 DSS+E STs 0.039204 (73) (R)SB(s)0/a (R)SAB(s)0/a • • ◦ • •
NGC 7603 ESO 113– G 050 DSS+E STs 0.028873 (90) S0− pec SA0 ◦ ◦ • ◦ •
Mrk 541 UGC 9532 NED04 SDSS 2.5-m 0.041889 (150) S0Sim (R)SAB0 • • ◦ • •

Notes. (3) DSS+E designates DSS I, II, and digitized ESO-Uppsala Survey; (4) VLT-U4 – Very Large Telescope Unit 4; STs – the Schmidt
telescopes used to produce the Palomar Observatory Sky Survey I, II, and the ESO-Uppsala Survey; CFHT – Canada France Hawaii Telescope;
NTT – New Technology Telescope; CTIO – Cerro Tololo Inter-American Observatory; JKT – Jacobus Kapteyn Telescope; WHT – William
Herschel Telescope; (5) The redshift of 2MASX J14595983+2046121 was taken from SDSS; Cols. 8-12 are the same as Cols. 7-11 of Table 1.
(a) We inspected the R image of Beijersbergen et al. (1999). (b) DSS II optical data not available for this object.

ensuring that the analysis is restricted to the same portions of
the images.

The cleaned frames were visually inspected to remove any
remaining sources of contamination in all passbands. Some of
the defects – such as objects appearing with different bright-
nesses in the individual passbands (e.g., too “blue”/“red”), me-
teor or satellite trails, diffraction spikes, bleeding along columns,
scattered light, etc. – are unique for each passband/frame and de-
mand individual approach. For instance, owing to a bright star in
the field of Ark 564, ghost images of the telescope main mirror
and bleeding along columns were produced. These defects were
corrected with the help of a set of individual masks.

PSF subtraction. We applied this technique in cases of stel-
lar object contamination, especially when superposed on galaxy
regions with large gradients. The contaminating objects were
cleaned out by aligning, scaling, and subtracting the frame PSF.

Symmetric replacement. We replaced the contaminated re-
gion with the region that is symmetric with respect to the galaxy
centre and free of contaminating features in case the contami-
nated region does not cover too large a part of the galaxy area

and is far enough from the galaxy centre. The galaxy in the two
regions should be symmetric with respect to the galaxy centre.

Deblending. We iteratively fitted ellipses to the contaminat-
ing object and the galaxy, starting with the brighter object, and
subtracted the fitted models from the original frame until con-
vergence was achieved.

Annular cleaning. The contaminated region was covered
with elliptical annuli of fixed width, centred on the galaxy nu-
cleus. In each annulus the pixel values, deviating by more than a
predefined threshold above the mode, were replaced by the mode
(for details see Markov et al. 1997).

When we wanted to keep a single feature in the images and
not take it into account in the ellipse fitting, we used the option
of FIT/ELL3 command to exclude the sector containing the given
feature from the fit (e.g., the extended feature in Mrk 335).

We treated contaminating features when it was obvious
that they did not belong to the galaxy. Some faint galaxy re-
gions/projected objects can be cleaned/left by mistake, but their
exclusion/inclusion will make little difference to the parameters
derived.
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Table 3. Observation log of the Sy galaxies.

Galaxy Civil Date Filters FWHM β Calibration CCD Remarks

[yyyy mm dd] [arcsec]

(1) (2) (3) (4) (5) (6) (7) (8)

Mrk 335 1998 08 22 BVRCIC 1.17 ± 0.06 2.95 ± 0.12 NGC 7790 AT
2007 08 20 VRCIC 1.14 ± 0.03 3.67 ± 0.17 SS VA

III Zw 2 1997 09 09 BVRCIC 1.32 ± 0.03 3.66 ± 0.35 SS AT2×
Mrk 348 1997 09 07 BVRCIC 0.92 ± 0.05 3.24 ± 0.46 NGC 7790 AT
I Zw 1 1998 08 20 BVRCIC 1.50 ± 0.03 2.75 ± 0.12 NGC 7790 AT2×
Mrk 352a 2007 08 21 RC 0.86 ± 0.06 4.14 ± 0.89 SS VA

2008 01 30 BVRCIC 1.45 ± 0.03 2.97 ± 0.06 SS VA
Mrk 573 1997 09 07 BVRCIC 1.60 ± 0.08 . . . NGC 7790 AT
Mrk 590a 1997 09 06 BVRCIC 1.61 ± 0.04 2.44 ± 0.07 SS AT2×
Mrk 595 1997 09 09 BVRCIC 1.47 ± 0.02 3.78 ± 0.17 SS AT2×
3C 120 1997 09 09 BVRCIC 1.54 ± 0.03 3.71 ± 0.14 SS AT2×

2008 02 01 BVRCIC 1.61 ± 0.03 3.47 ± 0.09 SS VA
Ark 120 1994 09 29 B RC 0.95 ± 0.02 2.99 ± 0.18 SS TEK4 JKT, 0.′′33 px−1

1991 12 08 V 0.93 ± 0.07 3.87 ± 0.31 SS SAIC1 CFHT, 0.′′20 px−1

Mrk 376 2008 02 03 BVRCIC 0.80 ± 0.02 3.84 ± 0.12 SS VA
Mrk 79 1999 02 16 BVRCIC 3.57 ± 0.29 8.15 ± 1.48 NGC 7790, M 92 AT2×

2008 02 01 BVRCIC 1.24 ± 0.04 3.76 ± 0.17 SS VA
Mrk 382 1998 02 27 BVRCIC 2.57 ± 0.15 5.39 ± 0.99 SS AT2×

2008 02 02 BVRCIC 1.74 ± 0.04 3.50 ± 0.16 SS VA
NGC 3227 1999 04 17 BVRCIC 1.86 ± 0.08 5.59 ± 0.57 M 92 AT
NGC 3516 2008 01 08 VRCIC 1.82 ± 0.05 3.54 ± 0.31 SS FVA
NGC 4051b 1995 05 06 B 1.43 ± 0.07 3.43 ± 0.16 ZP TEK4 JKT, 0.′′241 px−1

2000 03 30 RC 1.78 ± 0.03 3.09 ± 0.30 SS SITe2 JKT, 0.′′241 px−1

2001 04 09 IC 1.41 ± 0.04 4.42 ± 0.43 ZP SITe2 JKT, 0.′′241 px−1

NGC 4151 1999 03 10 BVRCIC 1.06 ± 0.03 2.98 ± 0.10 M 67 AT
1999 04 19 BVRCIC 2.55 ± 0.11 2.68 ± 0.47 M 92 AT2×

Mrk 766 1999 02 15 BVRCIC 3.16 ± 0.04 4.23 ± 0.25 NGC 7790, M 92 AT2×
Mrk 771a, c 1990 06 23 V IC 0.56 ± 0.01 2.32 ± 0.01 M 92 SAIC1 CFHT, 0.′′13 px−1

NGC 4593 2008 01 08 VRCIC 2.56 ± 0.08 3.87 ± 0.48 SS FVA
Mrk 279a 2008 02 02 BVRCIC 1.16 ± 0.03 3.01 ± 0.05 SS VA
NGC 5548 1999 04 19 BVRCIC 2.44 ± 0.26 3.05 ± 0.54 M 92 AT2×
Ark 479 2007 07 19 VRCIC 1.19 ± 0.06 7.05 ± 0.48 SS VA
Mrk 506 1997 06 01 BVRCIC 2.47 ± 0.17 5.30 ± 1.03 M 92 AT2×

1998 07 18 BVRCIC 1.59 ± 0.03 3.22 ± 0.12 M 92 AT2×
2007 06 17 BVRC 1.56 ± 0.03 3.29 ± 0.05 SS VA

3C 382 1998 08 23 BVRCIC 1.24 ± 0.03 3.49 ± 0.36 NGC 7790 AT2×
3C 390.3 1998 08 20 BVRCIC 1.71 ± 0.06 3.43 ± 0.09 NGC 7790 AT2×
NGC 6814 1997 07 06 BVRCIC 3.21 ± 0.10 3.01 ± 0.33 SS AT2×

1997 07 10 BVRCIC 1.90 ± 0.07 3.83 ± 0.41 M 92 AT2×
1997 09 07 BVRCIC 1.70 ± 0.05 . . . NGC 7790 AT2×
1998 07 18 BVRCIC 1.24 ± 0.01 2.33 ± 0.03 M 92 AT

Mrk 509 1997 07 10 BVRCIC 1.70 ± 0.03 2.92 ± 0.07 M 92 AT2×
1997 09 08 BVRCIC 1.58 ± 0.08 9.40 ± 0.90 SS AT2×
1998 07 20 BVRCIC 2.13 ± 0.06 3.66 ± 0.16 M 92 AT2×

Mrk 1513 2007 08 20 VRCIC 1.19 ± 0.02 4.20 ± 0.13 SS VA
Mrk 304 1998 07 19 BVRCIC 2.07 ± 0.07 2.86 ± 0.19 M 92 AT2×
Ark 564 1998 07 18 BVRCIC 2.11 ± 0.06 3.56 ± 0.20 M 92 AT2×

1998 08 20 BVRCIC 2.26 ± 0.14 . . . NGC 7790 AT2×
NGC 7469 1997 09 06 BVRCIC 1.39 ± 0.04 2.57 ± 0.32 SS AT2×

1998 07 19 BVRCIC 1.91 ± 0.09 2.99 ± 0.20 M 92 AT2×
1998 08 23 BVRCIC 0.92 ± 0.02 4.68 ± 0.29 NGC 7790 AT
2003 07 28 BVRCIC 0.99 ± 0.04 3.41 ± 0.29 M 92 AT

Mrk 315 2007 08 22 RC 1.18 ± 0.02 3.37 ± 0.08 SS VA
NGC 7603 2007 07 19 V IC 1.41 ± 0.04 3.40 ± 0.17 SS VA
Mrk 541 2007 07 19 VRCIC 1.20 ± 0.04 3.42 ± 0.09 SS VA

Notes. (5) β of the Moffat PSF (see text; ellipsis dots denote Gaussian PSF was assumed); (6) SS – secondary standards used, ZP – zero point
taken from the FITS file header; (7) AT – AT200, AT2× – AT200 2 × 2 binned, VA – VersArray:1300B, and FVA – VersArray:512B attached
to the two-channel focal reducer; (8) Telescopes used to obtain the archival data, and the corresponding scale factors. (a) Archival Hubble Space
Telescope (HST) data have also been used. (b) See Knapen et al. (2004) for observational details. (c) See Hutchings & Neff (1992) for observational
details.
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4.3. Sky background estimation

Proper sky background estimation is important for the cor-
rect photometry of any extended object, especially the faint
outer galaxy regions. We estimated the sky background on the
smoothed frame cleaned from contaminating features, approxi-
mating the sky intensity distribution (measured in boxes evenly
placed in blank regions) by a tilted plane, using the least-squares
method (FIT/FLATSKY command). The frame areas having inten-
sities above some threshold (given the trial estimate of the sky
background and its error based on histogram analysis within the
AIP package) were masked prior to background estimation in
order to avoid influence by contaminating features or the galaxy
itself and to make the procedure more objective. To estimate sky
background properly in the presence of eventual gradient, we
placed the boxes relatively close to the galaxy outskirts. The
adopted error of the sky background, σsky, equals the standard
deviation about the fitted plane.

Properly estimated sky background would show up in an
asymptotically flat growth curve, whereas sky background es-
timation errors would cause a continuous increase or a maxi-
mum followed by a continuous decrease in the growth curve.
The shape of the growth curve can therefore be used to fine-
tune the sky background by simply adding/subtracting a con-
stant to/from the frame (Binggeli et al. 1984). In general, our
procedures worked well though an unambiguous estimate of the
sky background is not always possible, e.g., in cases of a bright
companion, an overcrowded field, or not enough field free of
the galaxy. In cases of a non-asymptotically flat growth curve,
we preferred to re-determine the sky background rather than to
add/subtract a constant.

4.4. Ellipse fitting to isophotes

We performed ellipse fitting to the isophotes of the galaxy im-
ages (FIT/ELL3 command within the SURFPHOT package) follow-
ing Bender & Möllenhoff (1987). The algorithm starts from the
galaxy centre spacing the isophote levels in a logarithmically
equidistant manner, i.e., with a fixed SB step. The fitting algo-
rithm works on gradients dI/da< 0, where I is the isophote in-
tensity and a the semi-major axis. Ellipses were generally fitted
down to I ≈ σsky. The errors of the fitted ellipse parameters
were computed following Rauscher (1995). The error of an in-
tensity level takes into account the error of the mean intensity
along the sampled ellipse and the sky background error (Smith &
Heckman 1989). We obtained a model-subtracted residual image
by subtracting the model image, reconstructed using the derived
ellipse parameters, from the original image.

As a result of ellipse fitting, we derived profiles of the SB, ε,
and position angle (PA) as a function of a for each galaxy. Radial
colour index (CI) profiles were obtained by subtracting two in-
dividually determined radial SB profiles after they had been cal-
ibrated (see Sect. 4.5) and smoothed to the worse FWHM.

4.5. Photometric calibration

The nights of photometric quality were calibrated using
multi-star standard fields established in stellar clusters. We
used the clusters M 923 (Majewski et al. 1994), NGC 7790

3 Note that we have added 0.002 mag to the V magnitudes and to the
B−V colour indices of the M 92 standard stars listed in Majewski et al.
(1994) according to the addendum of Stetson & Harris (1988).

(Odewahn et al. 1992; Petrov et al. 2001),k and M 67 (Chevalier
& Ilovaisky 1991) for this purpose.

We performed aperture stellar photometry of the standard
fields by means of DAOPHOT II package (Stetson 1987, 1991).
We applied the growth curve method to get the total instrumen-
tal magnitudes of the standard stars; its very idea rests on S/N
arguments (Stetson 1990).

The transformation coefficients to the standard Johnson-
Cousins system were determined following Harris et al.’s (1981)
approach. The equations read as

b − B = c(0)
B + c(1)

B X + c(2)
B (B − V)

υ − V = c(0)
V + c(1)

V X + c(2)
V (V − RC)

r − RC = c(0)
RC
+ c(1)

RC
X + c(2)

RC
(V − RC)

i − I C = c(0)
IC
+ c(1)

IC
X + c(2)

IC
(RC − IC),

where the small and capital letters denote the total instrumental
and standard magnitudes of the cluster standard stars, respec-
tively; c(0) is the zero point magnitude, c(1) the extinction coeffi-
cient, and c(2) the colour coefficient. The transformation coeffi-
cient errors were incorporated in the final SB error.

The data in nights with some weather or technical problems
were transformed to the standard system using secondary stan-
dards after Bachev et al. (2000), González-Pérez et al. (2001),
Doroshenko et al. (2005a,b), and Mihov & Slavcheva-Mihova
(2008); unpublished results of ours were also used. The standard
fields, used for calibration, are denoted in Table 3.

4.6. Subsidiary images

To facilitate revealing the individual galaxy features, we con-
structed the following subsidiary images: CI images, model-
subtracted residual images (see Sect. 4.4), unsharp masked resid-
ual images (unsharp mask-subtracted and unsharp mask-divided
ones), and structure maps. In a couple of instances, a fitted 2D
analytical model was subtracted.

The CI images were constructed after the corresponding
frames had been aligned and smoothed to an equal (the worse)
FWHM. Besides this, we smoothed the images using a median
filter of a variable size depending on the size of the feature of
interest. By subtracting the smoothed image from the original
one, we constructed an unsharp mask-subtracted residual image.
Analogically, by dividing the original image by the filtered one,
we acquired an unsharp mask-divided residual image (Sofue
1993; Sofue et al. 1994; Laurikainen et al. 2005). The subtrac-
tion procedure works best in the galaxy outskirts but fails near
the centres as the absolute contribution of shot noise gets large;
on the contrary, the division approach is best suited to examin-
ing structures in the central regions, as the relative contribution
of shot noise is small there (Lauer 1985).

Finally, we constructed a structure map, S (Pogge & Martini
2002):

S =
( O
O ⊗M

)
⊗MT,

where O is the original image,M the Moffat PSF,MT the trans-
pose of the PSF,MT(x, y) = M(−x,−y), and ⊗ the convolution
operator.
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Table 4. Close companions of the Sy galaxy sample.

Galaxy Companion ΔD |ΔVr| Ref.

[arcmin] [kpc] [km s−1]

(1) (2) (3) (4) (5) (6) (7)

III Zw 2 III Zw 2B 0.572 54.38 199 ± 106 10 10
Mrk 348 2MASX J00485285+3157309 1.218 20.05 321 ± 51 12 19
I Zw 1 J005334+124133a 0.260 17.38 170 ± 110b 5
Mrk 573 APMUKS(BJ) B014126.68+020933.5 3.734 70.95 ≈100b 16
Mrk 590 SDSS J021429.36–004604.7 1.053 31.17 234 ± 39 8 1
NGC 3227 NGC 3226 2.177 12.78 181 ± 38 14 14

2MASX J10232246+1954510 3.515 20.63 42 ± 37 8 4
2MASX J10232162+2001380 9.961 58.47 9 ± 38 8 4
SDSS J102434.71+200157.8 18.122 106.38 128 ± 42 8 4
SDSS J102315.38+201040.5 19.109 112.17 41 ± 40 8 4

NGC 4151 SDSS J121021.06+391252.1 11.688 57.62 75 ± 35 8 3
SDSS J120959.87+391147.7 14.053 69.28 343 ± 43 8 3

NGC 4593 MCG –01–32–033 3.809 45.67 149 ± 67 21 13
Mrk 279 MCG+12–13–024 0.761 26.88 159 ± 25 20 7
NGC 5548 SDSS J141824.74+250650.7 5.867 122.74 206 ± 22 8 4

2MASX J14173385+2506515 5.959 124.66 40 ± 59 8 4
Ark 479 SDSS J153550.82+143035.3 0.622 14.60 48 ± 50 9 2
Mrk 506 CGCG 170–019 0.763 37.20 561 ± 58 8 9

SDSS J172229.44+305231.6 2.277 111.00 505 ± 58 8 2
3C 390.3 PGC 062330 1.802 112.68 549 ± 57 11 18
NGC 7469 IC 5283 1.315 23.29 87 ± 37 15 14
Mrk 315 [CAM2005] DWARF 1.024 44.10 193 ± 35 6 6
NGC 7603c NGC 7603:[LG2002] 3 0.620 20.27 87 476 ± 388 8 17

SDSS J231859.26+001405.4 0.860 28.12 56 018 ± 461 8 17
NGC 7603B 0.985 32.21 7535 ± 47 8 1

Notes. (3) and (4) Projected linear separation taken from NED; (5) Absolute radial velocity difference calculated using redshift sources specified
in Cols. 6 and 7; (6) and (7) References regarding the redshift sources of the primary and the companion, respectively, generally taken through
NED. (a) We list the J2000 coordinates taken from Aladin for the name of the anonymous companion. (b) The absolute radial velocity difference
itself was taken from the source given in Col. 6. (c) Anomalous redshift galaxy system, not taken into account in the companion statistics.
References. (1) Abazajian et al. (2003); (2) Abazajian et al. (2009); (3) Adelman-McCarthy et al. (2007); (4) Adelman-McCarthy et al. (2008);
(5) Canalizo & Stockton (2001); (6) Ciroi et al. (2005); (7) de Grijp et al. (1987); (8) de Vaucouleurs et al. (1991); (9) Falco et. al (1999);
(10) Heckman et al. (1984); (11) Hewitt & Burbidge (1991); (12) Huchra et. al (1999); (13) Jones et al. (2009); (14) Keel (1996a); (15) Keel
(1996b); (16) Kuo et al. (2008); (17) López-Corredoira & Gutiérrez (2004); (18) Penston & Penston (1973); (19) Petrosian (1982); (20) Strauss &
Huchra (1988); (21) Strauss et al. (1992).

5. Bar characterization

We consider a galaxy barred if there is an ellipticity maximum
greater than 0.16 with an amplitude of at least 0.08 over a region
of PA, constant within 20◦, following Aguerri et al. (2009).

The deprojected ellipticities of the bar-like structures of sev-
eral of the galaxies were found to be less than 0.15, which
is typical of ovals and lenses, but we cannot be more spe-
cific without kinematic data (Kormendy & Kennicutt 2004; see
also Sellwood & Wilkinson 1993). According to Kormendy &
Kennicutt (2004) barred and oval galaxies evolve similarly and
are essentially equivalent regarding gas inflow4; furthermore,
both ovals and lenses are non-axisymmetric enough to drive sec-
ular evolution (see also Weinzirl et al. 2009). Thus, bars, ovals,
and lenses are functionally equivalent in the context of AGN
fueling and, for the purpose of bar statistics, we shall refer to
them as bars. Deprojected bar ellipticity can be used as a first-
order approximation of bar strength (e.g., Martin 1995; Block
et al. 2004). We classify a bar as strong if its deprojected ellip-
ticity is greater than 0.45 after Laine et al. (2002). In bar and
ring statistics, we take only large-scale structures into account.
We adopt 1 kpc as an upper limit for nuclear/secondary bar

4 Most of the oval galaxies are classified SAB.

semi-major axis following Greusard et al. (2000) and 1.5 kpc as
an upper limit for nuclear ring semi-major axis after Erwin &
Sparke (2002).

6. Surface photometry outputs

We carried out a detailed morphological characterization of a
sample of Sy galaxies and a matched inactive sample. We scruti-
nized various images, residuals, maps, and profiles in a case-by-
case approach in order to reveal galaxy structures that could be
related to the fueling of Sy nuclei. As a result we list the mor-
phological classification assigned by this study (the error of T
is ±1) and remarks concerning the presence of bars, rings (in-
cluding pseudo-rings), asymmetries, and companions in the last
six columns of Tables 1 and 2 for the Sy and control sample,
respectively.

We paid special attention to the Sy sample (see
Appendices A and B) in the framework of the precise esti-
mate of the structural parameters based on SB decomposition
that is ongoing. Thus, the rest of the section concerns the
Sy sample. On the basis of the ellipse fits, we determined
global, isophotal, and bar parameters, which will be presented
in Slavcheva-Mihova & Mihov (in prep.). Furthermore, we
reveal or straighten out the presence of structures in a part of
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the galaxies and discuss the influence of some features on the
structural parameters estimation through decomposition. Brief
comments on most of the galaxies in this context are given in
Appendix B.

We found the following structures not hitherto reported to
our knowledge:

– a bar in Ark 479 and an oval/lens in Mrk 595,
– inner rings in Ark 120 and Mrk 376,
– a filament (3C 382) and loop-like features (NGC 7603),
– a nuclear bar surrounded by a ring in Mrk 352 and nuclear

dust lanes in Mrk 590.

Furthermore, we clarified the morphological status of some ob-
jects. We consider Mrk 376 barred, Mrk 279 and NGC 7469 har-
bouring ovals/lenses, Mrk 506 non-barred, and that NGC 3516
has an inner ring. We discussed the bars suggested for Mrk 573
and NGC 3227, as well as the nature of the proposed galaxy
merging into 3C 382.

The profiles of not all the barred galaxies express clear
bar signatures. The ellipticity maximum may be masked by
the beginnings of spiral arms (e.g., NGC 6814), other fea-
tures at the bar edges (e.g., Mrk 771), or more central fea-
tures (e.g., NGC 7469). The SB bump may be weak or even
absent (e.g., Mrk 771, NGC 6814). The spiral arm beginnings,
emerging from the bar edges, produce a wavelength-dependent
SB bump and an ellipticity peak, imposed over the end of the
bar SB bump and the ellipticity maximum, respectively, accom-
panied by blue CI dips and an almost constant/slightly changing
PA (e.g., Mrk 79, NGC 4593); the ellipticity maximum may be
wavelength-dependent, too (e.g., Ark 564). This masking of the
bar end could result in an overestimation of the bar length deter-
mined through decomposition.

Generally, partial fitting of the spiral structure by the model
results in SB bumps at a continuously changing PA, often ac-
companied by ellipticity maxima (e.g., Mrk 348, I Zw 1). Rings
commonly produce SB bumps (e.g., Mrk 506, Mrk 541). There
are other features that could also influence the profiles – features
at bar ends (Mrk 771, Mrk 279), shells (NGC 5548), tidal fea-
tures (e.g., III Zw 2), dust (e.g., NGC 3227), underlying features
(3C 120, Mrk 315), and [O iii] emission (Mrk 573, Mrk 595,
Mrk 766). Thus, the particularized features can modify the
SB distribution, thereby altering the structural parameters ob-
tained as a result of decomposition. To get trustworthy estimates
of these parameters, the above features should be considered in
decomposition, either fitting some of them (e.g., the recent ver-
sion of GALFIT, Peng et al. 2010) or excluding the correspond-
ing regions.

7. Local environment

We explored the local environment of both the Sy galaxy sam-
ple and the inactive one. We looked for close physical com-
panions (further referred to as just companions) within (1)
a projected linear separation of five galaxy diameters after
Schmitt (2001) and (2) an absolute radial velocity difference
of |ΔVr|= 600 km s−1. The latter is the typical pairwise veloc-
ity dispersion of the galaxies in the combined CfA2+SSRS25

and is about twice as the pairwise velocity dispersion, not in-
cluding clusters (Marzke et al. 1995; see also Davis & Peebles
1983). We did not impose a brightness difference limit criterion

5 Second CfA and Southern Sky Redshift Surveys.

as it would introduce a bias against dwarf galaxies, which are be-
lieved to play a significant role in minor merger processes (e.g.,
Ciroi et al. 2005).

The companions of the Sy and inactive galaxy sample are
listed in Tables 4 and 5, respectively. In the separation estima-
tion we used the 25 B mag arcsec−2 isophotal diameters (also
taking their errors into account), corrected for Galactic extinc-
tion and inclination. We generally used the diameters given in
HyperLeda. There are instances of a larger companion than
its primary (e.g., 2MASX J04363658–0250350). Thus, applying
the separation criterion, we inspected the environment of each
primary in a large enough field and took the greater of the diam-
eters for each candidate pair into account.

The radial velocity difference was calculated using the spe-
cial relativistic convention (e.g., Keel 1996b):

Vr =
(1 + z)2 − 1
(1 + z)2 + 1

c.

We used redshift, corrected to the reference frame defined by the
3 K microwave background radiation given in NED.

8. Discussion

8.1. Seyfert sample

The small share of ellipticals among Sy galaxies has been known
for a long time (Adams 1977; Moles et al. 1995), though it
has been suggested that bright radio-quiet quasars, like their
radio-loud counterparts, tend to reside in elliptical galaxies, thus
refuting the stated link between radio loudness and T (e.g.,
McLure et al. 1999). In fact, a few of our Sy sample galaxies
have been classified as elliptical, but we found all of them disk-
dominated (see Table 1). The E↔ S0 misclassification could fre-
quently occur when only visual inspection is involved, espe-
cially of faint/distant galaxies (de Souza et al. 2004). Identifying
the disk galaxies, misclassified as ellipticals, is substantial for
the correct photometric decomposition, too (Erwin et al. 2004).
Besides this, bad seeing or low resolution could lead to blur-
ring of a spiral structure (i.e., spiral→ S0 misclassification) and
of bars/rings. The morphological type differences between this
study and RC3 (or NED/HyperLeda/SIMBAD when there is no
well-defined classification in RC3) can be followed in Table 1.
The Hubble type of the sample ranges from S0 to Sbc with
a median of S0/a (Fig. 1). As the bulk of our sample consists
of Sy 1 objects, the preference for early types may reflect that
Sy 1 galaxies tend to have smaller T than Sy 2 ones (Fricke
& Kollatschny 1989; Hunt & Malkan 1999; Koulouridis et al.
2006). The trend of active galaxies being earlier types than in-
active ones has already been noted by Terlevich et al. (1987; see
also Hunt & Malkan 1999).

8.2. Bar fraction

The bar fraction of galaxies is known to vary with wavelength
and bar detection methods (Aguerri et al. 2009; Hao et al. 2009).
Furthermore, there is no consensus on the preponderance of
bars in Sy galaxies. Studying the bar fraction, based on RC3
classification of Sy/inactive galaxies, Hunt & Malkan (1999)
found 67%/69% for the Extended 12 Micron Galaxy Sample
and Laurikainen et al. (2004) found 62%/69% for the Ohio
State University Bright Galaxy Survey. Using ellipse fitting of
matched samples in the near-infrared (NIR), Mulchaey & Regan
(1997) obtained similar bar fractions for the Sy (73%) and the
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Table 5. Close companions of the inactive galaxy sample.

Galaxy Companion ΔD |ΔVr| Ref.

[arcmin] [kpc] [km s−1]

(1) (2) (3) (4) (5) (6) (7)

NGC 2144 ESO 016– G 009 8.492 160.24 23 ± 65 12 17
ESO 155– G 027 ESO 155– IG 028 NED02 1.996 137.30 244 ± 133 6 22

ESO 155– IG 028 NED01 2.290 157.53 0 ± 133 6 20
2MASX J03252010–5232057 3.590 246.96 413 ± 133 6 22
APMUKS(BJ) B032410.26–524522.5 4.047 278.39 260 ± 133 6 22

2MASX J04363658–0250350 CGCG 393–045 2.109 38.07 167 ± 50 10 10
CGCG 393–044 4.539 81.93 96 ± 48 10 10

2MASX J00342513–0735582 MCG –01–02–032 3.621 105.44 545 ± 74 10 10
IC 5065 2MASX J20520956–2951513 5.248 192.65 36 ± 27 8 14
ESO 183– G 030 IC 4797 14.879 154.44 10 ± 37 8 8
NGC 2775 SDSS J091019.53+070141.2 0.608 4.01 110 ± 74 8 2

SDSS J091028.77+071117.9 9.275 61.12 168 ± 31 8 11
NGC 2777 11.469 75.58 134 ± 32 8 8

UGC 6520 SDSS J113240.41+622735.1 3.187 47.61 140 ± 50 9 1
CGCG 314–031 4.914 73.42 23 ± 67 9 8

NGC 4902 NGC 4887 10.410 123.05 14 ± 49 23 7
ESO 510– G 048 ESO 510– G 050 3.058 158.80 29 ± 103 13 15
NGC 7421 NGC 7418 19.371 117.20 342 ± 27 21 18
ESO 292– G 007 2MASX J23392481–4603161 4.653 347.49 139 ± 275 19 4

2MASX J23393103–4553430 4.986 372.35 144 ± 186 19 4
2MASX J23401100–4559372 7.854 586.54 410 ± 187 19 4

NGC 897 2dFGRS S517Z282 0.772 13.83 374 ± 91 6 5
ESO 355– G 010 8.237 147.52 71 ± 38 6 24

ESO 423– G 016 APMUKS(BJ) B052441.44–314926.2 3.732 167.53 102 ± 67 6 16
UGC 9532 NED04 UGC 9532 NED02 0.237 11.46 194 ± 59 10 10

UGC 9532 NED05 0.782 37.80 482 ± 60 10 10
UGC 9532 NED06 1.192 57.62 482 ± 61 10 8
UGC 9532 NED01 1.302 62.94 50 ± 58 10 10
SDSS J144748.23+190352.2 1.804 87.21 411 ± 55 10 3

Notes. The columns are the same as in Table 4.
References. (1) Abazajian et al. (2004); (2) Abazajian et al. (2005); (3) Abazajian et al. (2009); (4) Alonso et al. (1999); (5) Colless et al. (2003);
(6) da Costa et al. (1991); (7) da Costa et al. (1998); (8) de Vaucouleurs et al. (1991); (9) Falco et. al (1999); (10) Hickson et al. (1992); (11) Hogg
et al. (1998); (12) Huchra et al. (1995); (13) Jones et al. (2009); (14) Jones et al. (2005); (15) Kaldare et al. (2003); (16) Katgert et al. (1998);
(17) Kirhakos & Steiner (1990); (18) Koribalski et al. (2004); (19) Lauberts & Valentijn (1989); (20) Lucey et al. (1983); (21) Meyer et al. (2004);
(22) Rose et al. (2002); (23) Theureau et al. (2007); (24) Zaritsky et al. (1997).

control (72%) sample, while Laine et al. (2002) found an excess
of bars in Sy galaxies (73% to 50%).

The incidence of bars in our Sy and control galaxy sample is
similar: (49± 8)%6 and (46± 8)%, respectively. These percent-
ages may be lower than in other studies in the optical, owing
to the large share of S0 galaxies that tend to show a lower in-
cidence of bars, relative to later types (Ho et al. 1997; Knapen
et al. 2000; Laurikainen et al. 2009; Aguerri et al. 2009). Given
our morphological mix and the distribution of bar fractions with
Hubble type in Ho et al. (1997), based on RC3 classification, and
in Aguerri et al. (2009), based on ellipse fitting, we estimated the
expected bar fraction of our combined (Sy and control) sample
to be 50% for the former and 44% for the latter authors, which
is similar to our fractions.

We present the distribution of deprojected bar ellipticities for
both samples in Fig. 5. Based on the deprojected bar ellipticity
value of 0.45 as an objective (although not ideal) criterion for bar
strength, we found that the frequency of weak bars in the Sy sam-
ple is higher than in the control one at about the 98% confidence
level. This result, however, is sensitive to the adopted limit as the

6 The associated error is estimated from binomial distribution as
σ( f ) =

√
f (1 − f )/N , where f is the fraction of interest in a sample

of size N.

Sy bars ellipticities are peaked around it; e.g., if we adopt 0.40
as a limit between strong and weak bars after Martinet & Friedli
(1997), the trend toward a deficiency of strong bars in Sy galax-
ies practically disappears. Either way, Sy bars (with median
deprojected εbar of 0.39) appear weaker than their inactive coun-
terparts (with median deprojected εbar of 0.49) at the 95% confi-
dence level7, which is consistent with Shlosman et al. (2000) and
Laurikainen et al. (2002, 2004). This difference cannot be ac-
counted for with the preference by early type galaxies for weak
bars (e.g., Laurikainen et al. 2004; Aguerri et al. 2009) as our
samples are matched in T .

8.3. Ring fraction

The fractions of ringed Sy, (49± 8)%, and control, (54± 8)%,
galaxies are the same within the errors. In particular, we found a
similar incidence of inner rings in the Sy, (34± 8)%, and control,
(40± 8)%, sample. The abundance of outer rings is formally the
same within the errors for both samples. Still, outer rings occur

7 The significance of the difference was estimated using the one-tailed
Student’s t-test.

A43, page 10 of 32



L. Slavcheva-Mihova and B. Mihov: Optical multiband surface photometry of Seyfert galaxies. I.

Fig. 4. Distribution of ε, estimated by Slavcheva-Mihova & Mihov (in
prep.), of the Sy (black columns) and control (empty columns) sample.
The bin size is 0.1. The left and right arrows designate the median values
of the Sy and control sample, respectively.

Fig. 5. Distribution of the deprojected bar ellipticities εbar, estimated by
Slavcheva-Mihova & Mihov (in prep.), of the Sy (black columns) and
control (empty columns) sample. The bin size is 0.1. The left and right
arrows designate the median values of the Sy and control sample, re-
spectively.

about 1.5 times more often in the Sy sample, (40± 8)%, than
in the inactive one, (26± 7)%. Such a trend was suggested by
Simkin et al. (1980) and Hunt & Malkan (1999). The correlation
in our results is less pronounced than in these papers, basically
because their results are not based on matched samples (espe-
cially in T ). Furthermore, the incidence of rings in our barred
subsample of galaxies is higher than in the non-barred one at
the 99.9% and 97.6% confidence levels for the Sy and control
sample, respectively, which is expected, since rings have been
considered the loci of concentration of gas or stars near the dy-
namical resonances (Schwarz 1981; Combes 2008).

8.4. Local environment and asymmetries

We found at least one close physical companion for (44± 9)%
of the Sy sample8 and (43± 8)% of the control one. These are
lower limits, when keeping in mind the radial velocity differ-
ence requirement and the underestimation of dwarf satellites,
especially of more distant galaxies. For instance, there is some

8 NGC 7603 was not taken into account owing to the anomalous red-
shift of the companion.

evidence of candidate companions (meeting the separation crite-
rion but with no redshift information) in both samples – tidal fea-
tures (3C 382, ESO 202– G 001, and ESO 113– G 050) or neigh-
bours of comparable brightness to the primaries (Mrk 376 and
ESO 324– G 003). Besides this, there is an extended feature in
Mrk 335 that may actually be a companion seen through the
galaxy disk (see Appendix B.1). Thus, considering the most ob-
vious cases of candidate companions, both the Sy and control
sample are again in a tantamount position. Comparison with
other results is hardly relevant as there are no universal criteria
for defining a physical companion: the choice of a limit for the
projected linear separation, radial velocity difference, and bright-
ness difference between the primary galaxy and its companion is
empirical, hence, arbitrary; moreover, the lack of redshift infor-
mation has often been substituted by statistical suppositions of
the share of projected objects. In fact, most research has aimed
at relative studies of the environment of Sy vs. inactive galaxies.
No consensus has been reached about the share of Sy galaxies
with companions – the results can be grouped into three: those
with an excess of Sy galaxies with companions relative to inac-
tive galaxies, those with no difference between Sy and inactive
galaxies, and those with an excess of Sy 2 galaxies with compan-
ions compared both to Sy 1 and inactive galaxies (Schmitt 2004,
and references therein).

Tidal interactions and minor mergers could produce various
tidal features and disturbed structures. We found, however, no
correlation between asymmetries and the presence of compan-
ions for both samples. One explanation lies in the delay between
the onset of interaction and its optical manifestation in the host
galaxy (e.g., Byrd et al. 1987), and bulge prominence can fur-
ther delay this (Hernquist & Mihos 1995). Second, an ongo-
ing merger would show up as an isolated asymmetric galaxy.
The fraction of asymmetric galaxies is the same within the er-
rors for the Sy (51± 8)% and control (43± 8)% sample. Similar
results were found by Virani et al. (2000) and Corbin (2000).
Furthermore, the fraction of asymmetric galaxies without com-
panions is practically equal for both samples (between (20± 7)%
and (26± 8)%, depending on whether candidate companions are
excluded from consideration or not). Therefore, we could come
to the corollary that minor mergers, at least not accompanied by
companions, do not occur in the Sy sample more often than in
the control one.

8.5. General discussion

It turns out that (91± 5)% of the Sy and (94± 4)% of the in-
active galaxies have bars or/and rings, asymmetries, compan-
ions. Thus, the vast majority of galaxies in both samples show
morphological evidence of non-axisymmetric perturbations of
the potential or/and have close companions. The rest of the
galaxies all show some signs of interaction: they either have
a companion within about seven galaxy diameters (Mrk 352,
2MASX J01505708+0014040, and ESO 292– G 022), have a
candidate companion without redshift information (Mrk 509,
Boris et al. 2002; Rafanelli et al. 1993), or show H i evidence
of a past merger (Mrk 304, Lim & Ho 1999). Thus, unperturbed
galaxies, both Sy and inactive, may turn out to be related to in-
teraction. Instances of fine structures indicative of past mergers
in active galaxies that were previously classified as undisturbed
have already been adduced (Canalizo et al. 2007; Bennert et al.
2008).

Even if we consider only the morphological evidence of
non-axisymmetric perturbations of the potential, its incidence
is equal within the errors in the Sy, (86± 6)%, and control,
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(83± 6)%, sample. Similar results were found by Virani et al.
(2000).

8.6. Robustness of the results regarding the different data
sources

All Sy galaxies and about a half of the control ones were im-
aged with CCDs. DSS I, II, and digitized ESO-Uppsala Survey
data were used for the rest of the control galaxies. We examined
to what extent the different data sources of the Sy and control
galaxies may introduce systematic errors in the results.

For all galaxies having CCD data (53 total), we also pro-
cessed the corresponding DSS data and independently estimated
the Hubble type and the presence of structures and asymmetries.
In the photographic data, we detected the same incidence of bars
and asymmetries as in the CCD data9. Of the detected rings in
the CCD data, we could not trace two inner rings (Mrk 376 and
Mrk 541) and one outer ring10 (Mrk 506) in the corresponding
photographic data. If we use these considerations to roughly cor-
rect for structures missed because of using photographic data,
the expected number of inner rings increases with one, and the
number of outer rings remains the same for the photographi-
cally imaged galaxies. Thus, regarding the control galaxies, this
correction affects only the fraction of inner rings, and it gets
(43± 8)% (vs. (34± 8)% for the Sy sample). This translates into
a maximal11 fraction of rings of (57± 8)% for the control sample
(vs. (49± 8)% for the Sy sample). The most that this correction
could affect the final results is when the undetected inner ring
is among the galaxies without morphological evidence of non-
axisymmetric perturbations of the potential (and companions).
Then the fraction of galaxies with bars or/and rings, asymme-
tries, companions gets (91± 5)% vs. (97± 3)% for the Sy vs.
control sample. Considering just the morphological evidence of
non-axisymmetric perturbations of the potential, the two sam-
ples show an equal incidence, (86± 6)%. As we can see, this
correction does not significantly influence the final results, since
all features affected by it occur with the same incidence within
the errors in both samples. The abundances themselves are ei-
ther equal in both samples or higher in the control one. In the
context of our study, looking for an eventual excess of features
in the Sy sample, this result should mean that the incidence of
the features of interest is not lower in the control sample than in
the Sy one.

8.7. Implication for the fueling of Sy nuclei

Regarding the Sy and control sample, we found a similar inci-
dence of bars, rings, asymmetries, and close companions, con-
sidered both on an individual basis and all together, with the
Sy bars somewhat weaker. Thus, our results imply that the fu-
eling of Sy nuclei is not directly related to large-scale mecha-
nisms operating over the bulk of the gas. There are some hints,
however, of a link between them.

First, it is generally believed that the required fuel is a tiny
fraction of the gas in the inner few 100 pc, especially of spiral

9 The photographic images are saturated for one galaxy classified
as barred (NGC 6814) and for one galaxy classified as asymmetric
(Mrk 315) in the CCD data, so we did not consider these cases.
10 The fraction of bars, inner rings, outer rings, and asymmetries in the
CCD/photographic data is (48± 7)%/(48± 7)%, (36± 7)%/(32± 6)%,
(36± 7)%/(34± 7)%, and (44± 7)%/(44± 7)%, respectively.
11 Extra detection of inner rings would affect the fraction of rings only
for galaxies not having outer rings.

galaxies, and angular momentum reduction is the major chal-
lenge (e.g., Jogee 2006). For instance, typical molecular gas
mass of ≈108 M� was reported for the central regions of most
NUGA12 galaxies (e.g., García-Burillo et al. 2005). A part of this
gas is expected to have resulted from secular evolution. A higher
molecular gas concentration was found in the central kilopar-
sec of barred galaxies than in non-barred ones (Sakamoto et al.
1999; Sheth et al. 2005, see also Regan et al. 2006); according
to the first authors, more than half of the central gas was driven
there by the bar. The gas in nuclear rings, the most evident trac-
ers of recent gas inflow, can be brought under the influence of
the SMBH by viscous torques in the scenario of García-Burillo
et al. (2005). Furthermore, higher central gas concentration has
been associated with interactions and mergers (e.g., Georgakakis
et al. 2000; Smith et al. 2007).

Second, generally weaker bars in Sy than in inactive galax-
ies have been associated with larger amounts of cold gas in their
host galaxies in the framework of central mass concentrations
that could destroy x1 bar orbits (Shlosman et al. 2000). It has
been shown, however, that bars are less fragile than previously
thought, and the mass of the central concentration required to
dissolve the bar must be very high (e.g., Shen & Sellwood 2004;
Debattista et al. 2006; Marinova & Jogee 2007). Alternatively,
the main destruction mechanism could be the transfer of angu-
lar momentum from the gas inflow to the bar (e.g., Bournaud
et al. 2005), especially in the presence of radiative cooling (e.g.,
Debattista et al. 2006). Thus, the weaker Sy bars may be related
to the generally larger cold gas amounts reported in their disks
(e.g., Hunt et al. 1999, see also Ho et al. 2008) in the context of
angular momentum transfer.

The relatively low accretion rates of Sy nuclei prompt a va-
riety of small-scale processes able to drive the circumnuclear
gas down to the very centre (e.g., Martini 2004). This could be
the main reason for a lack of a universal morphological pat-
tern on these scales (e.g., García-Burillo et al. 2004). Seyfert
activity, however, has been associated with the presence of dust
(Simões Lopes et al. 2007) and more disturbed gaseous kine-
matics (Dumas et al. 2007) in the circumnuclear regions. In this
regard, we started a study of the circumnuclear regions of a sam-
ple of Sy galaxies using HST archival images. The circumnu-
clear structures of Mrk 352 and Mrk 590 are the first results of
this research.

9. Summary

1. We presented a detailed morphological characterization of
a sample of 35 Sy galaxies. We scrutinized various images,
residuals, maps, and profiles in order to reveal galaxy struc-
tures that could be important for the fueling of Sy nuclei, as
well as for the proper photometric decomposition, which is
ongoing. The careful analysis of these data on an individual,
case-by-case basis, has led to a more explicit morphological
status of a part of the galaxies, resulting in improved mor-
phological type accuracy, and to new structural components
and features being unveiled:

– We revealed a bar in Ark 479, an oval/lens in Mrk 595,
inner rings in Ark 120 and Mrk 376, and features of pos-
sible tidal origin in 3C 382 and NGC 7603 for the first
time to our knowledge.

– We discussed some structures of controversial/unclear
morphology in Mrk 573, Mrk 376, NGC 3227,
NGC 3516, Mrk 279, Mrk 506, 3C 382, and NGC 7469.

12 NUclei of GAlaxies project.
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2. We compared the large-scale morphology and local environ-
ment of the Sy sample and a control one, matched in T , Vr,
MB

abs, and ε, with the following main results:
– We found similar fractions of bars in the Sy, (49± 8)%,

and control, (46± 8)%, galaxy sample.
– The Sy bars are weaker than the bars in the control sam-

ple with median deprojected bar ellipticity values of 0.39
vs. 0.49, respectively, at the 95% confidence level.

– The incidence of rings in the Sy and control sample is
similar – (49± 8)% and (54± 8)%, respectively.

– Practically equal parts of the Sy, (44± 9)%, and control,
(43± 8)%, sample have at least one physical compan-
ion within a projected linear separation of five galaxy
diameters and an absolute radial velocity difference of
|ΔVr|= 600 km s−1.

– There is no correlation between the presence of asymme-
tries and companions for both samples; minor mergers, at
least without companions, do not occur in the Sy sample
more often than in the control one.

– The vast majority of both samples, (91± 5)% of the Sy
and (94± 4)% of the control one, have bars, rings, asym-
metries, or close companions.

– Similar fractions of the Sy, (86± 6)%, and control,
(83± 6)%, sample show morphological evidence of non-
axisymmetric perturbations of the potential.

– The fueling of Sy nuclei does not appear directly related
to the large-scale morphology and local environment of
their host galaxies.

In the framework of our results we have started a study of the
circumnuclear regions of a sample of Sy galaxies using HST
archival images. As first results of this research, we revealed
a nuclear bar and ring in Mrk 352 and nuclear dust lanes in
Mrk 590.
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Appendix A: Contour maps and profiles
of the Sy galaxies

We present contour maps and profiles of the SB, CI, ε, and PA
of the Sy galaxies in Fig. A.1.

Appendix B: Comments on Sy sample galaxies

We discuss the Sy sample galaxies concerning features found
or particularized by this study and cases where the influence of
some features on the profiles is essential for the true structural
parameters estimation via decomposition.

When discussing the contour maps and profiles, reference
to Fig. A.1 goes without saying. Furthermore, CI and residual
images/maps, contour maps, structure maps, and 2D model-
subtracted residual images (Figs. B.1–B.29) visualize the indi-
vidual comments; dashed/dotted lines correspond to ellipticity
maxima/minima. In all figures north (N) is up, east (E) to the left;
the rest of the directions have been abbreviated as follows: south
(S), west (W), northeast (NE), northwest (NW), southeast (SE),
southwest (SW). In the CI images black is blue, white is red.
Concerning the residual images, white are the excess structures.

B.1. Mrk 335

There is an extended feature at PA=−43◦ with IC peak SB 7.′′4
away from the nucleus (Fig. B.1). The B – V , V – RC, and RC –
IC CIs of this feature, estimated on the model-subtracted resid-
ual images by means of aperture photometry, are 1.m48, 0.m75,
and 0.m89, respectively (correction for Galactic extinction was
applied after Schlegel et al. 1998). The feature is redshifted by
about 280 km s−1 and shows a steep Balmer decrement (Fricke
et al. 1983). The authors discussed ejection or merging and
found the latter unlikely. MacKenty (1990) proposed an edge-
on background galaxy as another interpretation. In our view,
given the undisturbed appearance of the galaxy, a companion
or a merging satellite at an early stage, seen through Mrk 335, is
a plausible hypothesis. No radio counterpart of the feature has
been observed (e.g., Kukula et al. 1995).

B.2. III Zw 2 (III Zw 2A in NED)

The contour map and the model-subtracted residual map reveal
an elongation to the SE, which is a merging galaxy (separation
of about 7′′; Surace et al. 2001), connected through a tidal bridge
with III Zw 2, as can be seen in the residual images of Veilleux
et al. (2006), and an arm-like extension to the N, which is a tidal
counterarm with knots of star formation (see also Surace et al.
2001). The tidal arm and the merging satellite produce an SB
bump, accompanied by blue CI dips and an ellipticity maximum
at a continuously changing PA in the region a ≈ 5′′–10′′.

B.3. Mrk 348

The galaxy has a distorted outer spiral structure (e.g., Pogge
& Eskridge 1993) due to interaction with its close companion,
which shows a CI gradient (Antón et al. 2002).

The ellipticity increase and the SB bump beyond a ≈ 45′′
are related to the diffuse stretched outer spiral structure. The in-
ner spiral structure leads to a continuous change of the PA. The
weak SB bump, visible in B, and the blue B – IC dip at a ≈ 5′′
are produced by a blue nuclear ring, more pronounced to the S
(Antón et al. 2002).

B.4. I Zw 1

The galaxy has asymmetric knotty spiral arms (the NW one be-
ing more pronounced) that may be of tidal origin (Surace &
Sanders 2000; Canalizo & Stockton 2001). They produce an
SB bump, CI dips, and an ellipticity maximum at a continuously
increasing PA in the region a ≈ 7′′–13′′.

B.5. Mrk 352

There is evidence of a nuclear bar around a = 2′′: the ellipticity
profile shows a peak, accompanied by a plateau on the PA pro-
file; however, there is no obvious SB bump. Moreover, the un-
sharp masked residual reveals a nuclear ring (Fig. B.2). To fur-
ther verify our findings, we processed archival HST WFPC213

F606W data. Subtraction of a fitted 2D bulge-disk model (the
nucleus was masked out) reveals a θ-shaped residual (Fig. B.3),
most probably due to a nuclear bar surrounded by a ring. In the
region around a = 2′′ the ellipticity and PA profiles show a sim-
ilar behaviour like ours and, in addition, the SB profile reveals a
weak bump; we used the HST profiles to derive the bar parame-
ters. Furthermore, the SB profile has a weak bump, accompanied
by ellipticity peaks at a ≈ 4′′, which we associate with the ring.
Besides this, there is no significant dust (Deo et al. 2006) that
could disturb the corresponding isophotes.

B.6. Mrk 573

The B – IC map (Fig. B.4) exhibits two blue regions correspond-
ing to the ionization cones (Ferruit et al. 1999). They result in
a blue dip on the CI profiles and BV ellipticity maximum at
a ≈ 3′′. The V maximum was misinterpreted as evidence of a
secondary bar14 by Afanasiev et al. (1998). The second ellip-
ticity maximum (at a ≈ 9′′) corresponds to a bar. The B – IC
map also reveals a couple of arcs (labelled SE3 and NW3 by
Ferruit et al. 1999), which appears as a broken ring in the un-
sharp masked residual image (Fig. B.5).

The SB profiles in the region 25′′−40′′ are affected by an
outer ring (Pogge & De Robertis 1995), clearly outlined in
Fig. B.5. The profiles show signs for another bar at a ≈ 21′′
as already proposed by Laine et al. (2002). After a 2D elliptical
ring model subtraction, the ellipticity maximum decreases and
the weak SB bump vanishes, which keeps us from considering
this galaxy triple barred (see also Erwin 2004).

B.7. Mrk 590

Pogge & Martini (2002) reported a nuclear bar, based on HST
WFPC2 images. In their structure map, a ring-like structure
around the bar could also be seen, best traced to the NE. We
processed archival HST ACS/HRC15 F550M data and created
a structure map, which reveals several dust lanes. A couple of
them appear as straight dust lanes along bar leading edges (al-
though the bar signatures are not very evident, Fig. B.6) and
could be traced down to about 70 pc (0.′′14) in radius.

13 Wide-Field Planetary Camera 2.
14 The galaxy actually harbours a secondary bar of a = 1.′′2 (Martini
et al. 2001).
15 Advanced Camera for Surveys/High Resolution Channel.
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Fig. A.1. Calibrated contour maps and profiles of the Sy galaxies, ordered by right ascension. Upper panels: contour maps. North is up and east
to the left. The galaxy names and passbands are specified in the upper left; the numbers in the upper right denote the start SB, the end SB, and
the SB step (fixed to 0.5) in units of mag arcsec−2. Lower panels: profiles of SB, CI, ε, and PA. The CI profiles shown are B – IC (solid) and V – IC

(dashed); for Ark 120 B – RC (dash-dotted) is shown. For the rest of the profiles the solid, long-dashed, short-dashed, and dotted line is for the
B-, V-, RC-, and IC-band, respectively. For Mrk 352, Mrk 771, and Mrk 279 the HST profiles are also plotted (squares; their SB profiles are not
calibrated).

B.8. Mrk 595

The profiles and contour map suggest a bar-like structure, which
is most probably an oval/lens, given its small deprojected ellip-
ticity of 0.1316. Weak spiral arm stubs can be seen in the un-
sharp masked residual map (Fig. B.7). The V – IC map (Fig. B.8)
reveals a blue region to the NW, which roughly reflects the
[O iii] emission (see also Mulchaey et al. 1996).

The oval/lens produces an ellipticity peak and an SB bump
at an almost constant PA in the region a ≈ 4′′−8′′. The BV
ellipticity peak, accompanied by a weak B SB bump and blue
CI dips around a = 11′′, is caused by the spiral arm stubs. The
[O iii] emission results in enhanced ellipticity in V and in blue
V – IC dips in the regions of the two ellipticity peaks (Fig. B.8).

B.9. 3C 120

The contour map reveals strongly disturbed isophotes due to un-
derlying features (Soubeyran et al. 1989; Hjorth et al. 1995),
which affect the SB profiles.

16 Bars and bar-like features detected in the Sy sample will be discussed
in Slavcheva-Mihova & Mihov (in prep.).

B.10. Ark 120

The unsharp masked residual image (Fig. B.9) reveals a blue
knotty ring (a× b≈ 9′′ × 8′′) and a couple of arcs extending to
the N on either side of the nucleus, the W one being more pro-
nounced. The ring produces an SB bump and a blue dip on the
B – RC profile.

B.11. Mrk 376

The unsharp masked residual image (Fig. B.10) reveals a bent
bar. It is encircled by a ring (a× b≈ 5′′ × 3′′) with knots of star
formation that are outstanding in the V – IC image (Fig. B.11).
The two spiral arms get noticeably not as bright and form a weak
outer pseudo-ring (a× b≈ 14′′ × 9′′). The bar results in an ellip-
ticity maximum around a = 4′′ (the less pronounced elliptic-
ity maximum in B is due to seeing change), accompanied by an
SB bump at an almost constant PA. The inner ring produces an
SB bump (best expressed in B), which merges with the bar bump,
and a CI dip. The spiral structure results in weak SB bumps fur-
ther out. Note that “spiral arms or a bar-like structure” in the NIR
were hinted at by Hughes et al. (1993).
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Fig. A.1. continued.

B.12. Mrk 79

The galaxy is asymmetric: the NW spiral arm is truncated and
the NE bar side is diffuse. The outer isophotes have a rectangular
shape (see also Wehinger & Wyckoff 1977). The bar produces an
SB bump, together with an ellipticity maximum in the region a ≈
6′′−17′′; the ellipticity is highest in B due to the partial fitting of
the spiral arm beginnings. The wavelength-dependent ellipticity
bump next to the maximum, accompanied by an SB bump and a
blue CI dip, is produced by the inner part of the spiral structure.
The behaviour of the profiles17 beyond a= 24′′, is related to the
outer spiral structure.

B.13. Mrk 382

Mrk 382 has a bar with a ring (a× b≈ 9′′ × 7′′) around it. The
spiral structure forms an outer pseudo-ring (a× b≈ 17′′ × 12′′).
The ellipticity maximum, accompanied by an SB bump around
a = 7′′ results from the bar; the second ellipticity maximum and
the corresponding SB bump are due to the spiral structure.

17 The profiles are composed of two data sets – the last ≈20′′ are
extracted from images, which are deeper but with worse seeing
(Feb. 16/17, 1999).

B.14. NGC 3227

The ellipticity profile shows a broad maximum in the region a ≈
25′′–85′′, double-peaked in B, accompanied by SB bumps, best
expressed in B. The behaviour of the profiles around the inner
part of the ellipticity maximum is dominated by the bar, and in
the region of the outer part of the ellipticity maximum, is due to
the spiral arm beginnings, which result in blue B – IC dips and a
slight PA shift, best expressed in B.

When analysing a decomposition residual image, González
Delgado & Pérez (1997) argued for an N-S stellar bar of
a ≈ 1.6 kpc (≈21′′, assumed distance to the galaxy 15.6 Mpc).
Furthermore, based on isophotal analysis, Gadotti & de Souza
(2006) reported a bar of a = 1.9 kpc (≈22′′, assumed distance
to the galaxy 17.6 Mpc). In this region – more precisely, around
a = 17′′ – the profiles show complex behaviour: the ellipticity
profile has a wavelength-dependent maximum, accompanied by
a constant (but also wavelength-dependent) PA. At variance with
the above authors, we attribute this to dust absorption: the dust
location is such that the absorption by it causes an ellipticity in-
crease and a PA shift, relative to the galaxy PA, when moving to
shorter wavelengths (compare Figs. B.12 and B.13). In the NIR
the PA does not show any shift relative to the galaxy PA, and the
ellipticity profile does not have a maximum in this region (see
Fig. 2 of Mulchaey et al. 1997).
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Fig. A.1. continued.

B.15. NGC 3516

The unsharp masked residual image (Fig. B.14) is suggestive of
an incomplete inner ring around the bar. The presence of some
structures at the bar ends was mentioned by Knapen et al. (2002).

B.16. NGC 4051

The dust lane to the S of the nucleus (Deo et al. 2006) causes the
B ellipticity peak at a≈ 10′′. The bar and spiral arms together re-
sult in a broad ellipticity maximum, accompanied by SB bumps
in the region a≈ 25′′–110′′.

B.17. NGC 4151

The behaviour of the profiles in the inner 15′′ is most prob-
ably related to an inner disk on a similar scale (e.g., Simkin
1975; Bosma 1981; Gadotti 2008), an extended narrow-line re-
gion (Pérez et al. 1989; Asif et al. 1998), and dust arcs (e.g.,
Ulrich 2000).

B.18. Mrk 766

The higher V ellipticity maximum in the region of the bar is
related to the [O iii] emission, extended along the NW–SE di-
rection (Fig. B.15, see also Mulchaey et al. 1996).

B.19. Mrk 771

The cross-shaped structure in the model-subtracted residual map
(Fig. B.16), accompanied by disky isophotes (positive fourth-
order Fourier cosine coefficient c4; we define c4 after Milvang-
Jensen & Jørgensen 1999) is due to the combined influence of
the bulge and bar. There is a chain of blue knots near the SW bar
end (see Fig. B.16) that has been associated with a small merg-
ing companion (Hutchings & Neff 1992; Hutchings et al. 1994)
or with the bar itself, given the similar fainter feature near the
opposite bar end (Surace et al. 2001). Similar structures have
been observed in Mrk 279. The unsharp masked residual image
(Fig. B.17) reveals a weak asymmetric spiral structure forming a
nearly complete pseudo-ring.

In the region of the bar, the ellipticity profile has a broad
maximum at a roughly constant PA; however, the expected
SB bump is not present as the outer bar parts remain unfitted
(Fig. B.16). The SB bump around a = 6′′, accompanied by a
V – IC dip and a peak, superposed on the ellipticity maximum,
is related to the features on either side of the bar. To estimate
the bar parameters, we extracted archival HST WFPC2 F606W
profiles, on which the ellipticity peaks due to the bar and the
features discussed are detached. The innermost variations in the
profiles are artifacts from the guide hole of a = 0.′′75 (Hutchings
& Neff 1992).
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Fig. A.1. continued.

B.20. NGC 4593

The bar causes a broad ellipticity maximum around a = 47′′,
accompanied by an SB bump. The blue V – IC dip, together with
an SB bump overlapping with the bar SB bump and an ellipticity
peak superposed on the bar ellipticity maximum around a = 65′′,
is related to an inner ring.

B.21. Mrk 279

The direct images reveal an outer ring displaced to the NW
compared to the inner galaxy parts (the annular appearance
of the outer galaxy parts has already been noticed by Adams
1977) and a tail-like feature to the S. Around a = 5′′ there is
an SB bump, accompanied by almost constant ellipticity and
PA, and the ellipticity profile, extracted from the archival HST
WFPC2 F814W images, has a peak. In the corresponding re-
gion, the structure map (Fig. B.18) reveals a bar-like structure
(its parameters were estimated using the HST profiles), which
is most probably an oval/lens, given the small deprojected el-
lipticity of 0.13. The bar hypothesis has already been discussed
(Knapen et al. 2000; Pogge & Martini 2002; Scott et al. 2004).
Furthermore, there are two straight features on either side of the
oval/lens (similar to those in Mrk 771) and some more com-
pact structures about 15′′ NE and 9′′ SE of the nucleus (see
Fig. B.19). The NE structure appears blue and elongated in the
HST images, and the SE one, which is actually two objects that

are most probably projected, is red. Furthermore, the straight
features (hinted at by Adams 1977) and the tail-like one are blue;
as a whole, the outer galaxy parts appear blue and asymmetric
(Fig. B.20). The disturbed morphology of Mrk 279 could be a re-
sult of interaction with the companion, which is bluer and more
extended toward it. The unsharp masked residual image reveals
spiral arm stubs in the companion, suggesting SA0/a pec mor-
phology.

The wavelength-dependent ellipticity maximum at a ≈ 13′′
is related to the straight features. The ring produces an SB bump,
accompanied by blue CI dips around a = 17′′. The spiral dust
lanes, best traced at a ≈ 5′′–8′′ in the HST images (see e.g.,
Pogge & Martini 2002), produce the red CI bump around a = 6′′.

B.22. NGC 5548

The galaxy has shells and tidal tails that are suggestive of a
merger event (Schweizer & Seitzer 1988; Neff et al. 1990; Tyson
et al. 1998). The shells and the curved tail result in SB bumps and
in ellipticity and PA peaks.

B.23. Ark 479

The ellipticity profile shows a maximum around a = 6′′ ac-
companied by a weak SB bump and an almost constant PA,
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Fig. A.1. continued.

which corresponds to a bar. The unsharp masked residual im-
age (Fig. B.21) reveals the bar and spiral structure. The latter
causes wavelength dependence of the ellipticity maximum and
produces a weak SB bump (best expressed in V) further out.

B.24. Mrk 506

The structure map (Fig. B.22) reveals a blue inner ring
(a× b≈ 9′′ × 6′′), noticed already by Adams (1977), and a cou-
ple of faint spiral arms, emerging out of it and reaching a faint
outer ring (a× b≈ 16′′ × 13′′). It is useful to note that Su &
Simkin (1980) included Mrk 506 in the group of double-ringed
galaxies. The inner ring produces a B – IC dip and an SB bump,
and the weak B bump following the latter is due to the spiral
arms.

Although Mrk 506 is classified as weakly barred (RC3), the
behaviour of the profiles does not indicate a bar. Furthermore,
after a 2D elliptical ring model subtraction, the SB bump around
a = 9′′ practically disappears.

B.25. 3C 382

Three filaments can be discerned in the model-subtracted resid-
ual map (Fig. B.23). The NE and E filaments are oriented toward
a barred spiral galaxy about 1.′4 to the NE. According to Roche
& Eales (2000), the two galaxies are interacting and the blue ob-
ject 16′′ to the W (Fig. B.23) might be a gas-rich starburst dwarf
galaxy in the process of merging into 3C 382. In our view, this

object is most probably projected. It has a stellar-like appear-
ance in archival HST WFPC2 images; subtraction of Tiny Tim
generated PSF (Krist 1995) left no significant residual structure.

The SW filament could also be of tidal origin. The ellipticity
dip around a = 11′′ is associated with the NE filament. The
filaments result in weak SB bumps.

B.26. NGC 6814

A weak bar can be traced in the unsharp masked residual image
(Fig. B.24). Its signature on the profiles, however, is masked by
the spiral structure, that produces SB bumps, best pronounced
in B, blue CI dips, and a wavelength-dependent ellipticity maxi-
mum in the region a ≈ 10′′–40′′. To estimate the bar parameters,
we extracted J profiles (using Two Micron All Sky Survey im-
ages), on which the ellipticity peaks due to the bar and the spiral
arm beginnings are detached.

B.27. Mrk 1513

The SB bump around a = 14′′ is produced by the outer pseudo-
ring.

B.28. Ark 564

The bar results in an ellipticity maximum, accompanied by an
SB bump around a = 8′′. The partial fitting of the spiral arm
beginnings by the model causes wavelength dependence of the
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Fig. A.1. continued.

ellipticity maximum, a blue B – IC dip, and an SB bump, over-
lapping with the bar bump and largest in B. The spiral structure
forms a blue pseudo-ring (a× b≈ 16′′ × 12′′), which produces an
SB bump and a B – IC dip.

B.29. NGC 7469

The ellipticity profile shows a maximum around a = 14′′, ac-
companied by an SB bump, and an almost constant PA. The be-
haviour of the profiles there is not typical – in the inner part
it is dominated by an inner pseudo-ring (a× b≈ 13′′ × 7′′), and
in the region of the outer part it is due to a bar-like structure
(Fig. B.25). This is best illustrated in IC by a double-peaked el-
lipticity maximum and a corresponding weak double structure
of the SB bump. Given the small deprojected ellipticity of 0.12,
the bar-like structure is most probably an oval/lens. Márquez &
Moles (1994) suggested the bump is due to a lens but based
mainly on the fact that they could not find a reasonable fit by
a bar. The wavelength dependence of the ellipticity maximum
is caused by the inner pseudo-ring and the spiral structure. The
variations in the PA profile are related to the spiral structure.

B.30. Mrk 315

The inner 7′′ of the profiles are influenced by underlying
features. Ciroi et al. (2005) associated them with a dwarf galaxy

remnant and star formation regions; a faint spiral structure could
be traced in their residual images.

B.31. NGC 7603

NGC 7603 and the galaxy about 1′ to the SE are an example
of an anomalous redshift association (Arp 1971). NGC 7603 is
disturbed and shows evidence of tidal interaction (see López-
Corredoira & Gutiérrez 2004, and references therein).

There are a number of loop-like features (Fig. B.26), which
appear blue in the V – IC image (Fig. B.27). They result in an
SB bump, accompanied by a blue V – IC dip and a weak elliptic-
ity peak at a ≈ 21′′.

B.32. Mrk 541

The unsharp masked residual image (Fig. B.28) unveils an in-
ner ring (a× b≈ 7′′ × 5′′), broken roughly along the galaxy mi-
nor axis and a knotty outer ring (a× b≈ 20′′ × 13′′), more pro-
nounced to the W and displaced to the N with respect to the
nucleus. Both rings appear blue in the V – IC image (Fig. B.29).
The outer ring was noted already by Adams (1977), and Su &
Simkin (1980) included Mrk 541 in the group of double-ringed
galaxies. The rings produce SB bumps, accompanied by blue
dips on the CI profile.
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Fig. A.1. continued.
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Fig. A.1. continued.

Fig. B.1. Mrk 335 IC model-subtracted resid-
ual image. The extended feature is clearly
visible.

Fig. B.2. Mrk 352 RC unsharp mask-divided
residual image. The nuclear ring can be dis-
cerned.

Fig. B.3. Mrk 352 HST WFPC2 F606W 2D
model-subtracted residual image. The bar
encircled by a ring can be traced.
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Fig. B.4. Mrk 573 B – IC map. The con-
tours range from 1.2 to 1.95 with a step
of 0.05 mag arcsec−2. Overplotted are the
B model contours corresponding to the first
two ellipticity maxima and the minima fol-
lowing them. The first ellipticity maximum
is related to the ionization cones.

Fig. B.5. Mrk 573 RC residual image,
composite of an unsharp mask-divided-
subtracted one, so that there could be traced
the arcs and the outer ring. Overplotted are
the model contours corresponding to the
V ellipticity maxima.

Fig. B.6. Mrk 590 HST ACS/HRC F550M
structure map. The dust lanes can be traced.

Fig. B.7. Mrk 595 V unsharp mask-divided
residual map. Overplotted are the V model
contours corresponding to the two ellipticity
peaks. There can be traced the oval/lens, to-
gether with the spiral arm stubs.

Fig. B.8. Mrk 595 V – IC map. The contour
levels range from 1 to 1.4 with a step
of 0.025 mag arcsec−2; overplotted are the
V model contours corresponding to the two
ellipticity peaks. The mapped region roughly
reflects the [O iii] emission.

Fig. B.9. Ark 120 B residual image, compos-
ite of two unsharp mask-subtracted residual
images so that there could be traced the inner
knotty ring and the two faint arcs running to
the N.

Fig. B.10. Mrk 376 RC residual image,
composite of an unsharp mask-divided-
subtracted one. The bent bar, the clumpy
ring around it, and the two spiral arms, form-
ing a weak outer pseudo-ring, are clearly
outlined.

Fig. B.11. Mrk 376 V – IC image; the CI cod-
ing ranges from 1.1 to 1.6 mag arcsec−2. The
clumpy blue ring can be traced.

Fig. B.12. NGC 3227 B contour map. The
model levels, corresponding to the elliptic-
ity maximum and minimum around a= 20′′ ,
are plotted over the relevant galaxy levels.
The dust imparts a disturbed appearance to
the isophotes.
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Fig. B.13. NGC 3227 IC contour map. The
model levels, corresponding to the ellipticity
maximum and minimum around a = 20′′ ,
are plotted over the relevant galaxy levels.
Compare with Fig. B.12.

Fig. B.14. NGC 3516 RC residual image,
composite of an unsharp mask-divided-
subtracted one, so that the bar and rings can
be traced.

Fig. B.15. Mrk 766 V unsharp mask-
subtracted residual image. Overplotted is
the V – IC map (the levels range from 0.9
to 1.15 with a step of 0.05 mag arcsec−2;
solid) and the V ellipticity maximum.
Note the outer pseudo-ring, the blue region
oriented NW–SE, and the blue protrusion to
the NE.

Fig. B.16. Mrk 771 IC model-subtracted
residual map. The contours relevant to the c4

coefficient maximum (a = 4′′; dash-double-
dotted) and to the ellipticity maximum are
overplotted. Note the cross-shaped structure,
the disky isophote associated with it, and the
features extending on either bar side.

Fig. B.17. Mrk 771 IC unsharp mask-
subtracted residual image. The asymmetric
spiral structure is clearly outlined.

Fig. B.18. Mrk 279 RC structure map. The
oval/lens, together with the other features
discussed in text could be traced.
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Fig. B.19. Mrk 279 RC unsharp mask-
subtracted residual map with the model
contour corresponding to the ellipticity
maximum and the ones bracketing it
(a ≈ 8′′, 16′′; dash-dotted) overplotted. The
ellipticity maximum is related to the two
straight features.

Fig. B.20. Mrk 279 B− IC image. The CI
coding ranges from 1.7 to 2.3 mag arcsec−2.
The outer galaxy parts are blue and asym-
metric, and the companion gets bluer to-
wards Mrk 279.

Fig. B.21. Ark 479 V unsharp mask-
subtracted residual image. The bar and
spiral structure can be traced.

Fig. B.22. Mrk 506 RC structure map. The
rings, together with the spiral arms, are
clearly outlined.

Fig. B.23. 3C 382 RC model-subtracted
residual map. Three filaments are outstand-
ing. The object 16 ′′ to the W, cleaned from
the images, is shown here for illustration.

Fig. B.24. NGC 6814 RC unsharp mask-
divided residual image. The model contour,
corresponding to the ellipticity maximum, is
overplotted. The bar and the spiral structure
can be traced.

Fig. B.25. NGC 7469 B – IC image. The CI
coding ranges from 1.6 to 2.7 mag arcsec−2.
Overplotted are the model contours corre-
sponding to the two IC ellipticity peaks. The
pseudo-rings and the dust can be traced.

Fig. B.26. NGC 7603 V model-subtracted
residual image. There can be traced a com-
plex of loop-like features and a filament with
two emission-line galaxies overposed (encir-
cled).

Fig. B.27. NGC 7603 V – IC image. The CI
coding ranges from 1.15 to 1.7 mag arcsec−2.
Note the red dust lanes and the blue loop-like
features.
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Fig. B.28. Mrk 541 RC residual image,
composite of an unsharp mask-divided-
subtracted one. The broken inner ring and
the knotty outer ring are clearly outlined.

Fig. B.29. Mrk 541 V – IC image. The CI
coding ranges from 0.9 to 1.5 mag arcsec−2.
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