Hard X-ray diagnostic of proton-producing solar flares compared to other emission signatures

Rositsa Miteva

rmiteva@space.bas.bg Space Research and Technology Institute (BAS)

project collaborators:

Kostadinka Koleva^{IA}, Momchil Dechev^{IA}, Astrid Veronig^{UG}, Kamen Kozarev^{IA}, Manuela Temmer^{UG}, Petar Duchlev^{IA} and Karin Dissauer^{UG}

IA: Institute of Astronomy with NAO (BAS)

UG: Institute of Physics-IGAM, University of Graz

XI BULGARIAN-SERBIAN ASTRONOMICAL CONFERENCE 14-18 MAY, 2018, BELOGRADCHIK, BULGARIA

Acknowledgements

This study is part of the project

An investigation of the early stages of solar eruptions - from remote observations to energetic particles [NTS/Austria 01/23 28-Feb-2017]

funded by the National Science Fund of Bulgaria

Introduction: solar flares

NoRH 17GHz 2013-08-30 02:50:03

Introduction: solar flare emission

Temmer et al. (2008)

Figure 14.7: Schematic overview of hard X-ray, gamma-ray, and neutron production mechanisms. See also overview of processes in Table 14.1 (adapted from Rieger 1989).

precipitating particles

Aschwanden book (2002)

Introduction: solar proton events

Solar energetic particles (SEPs) protons: MeV–GeV electrons: keV–MeV

Open question: solar origin of SEPs

- single or dual accelerators?
 flares vs. coronal mass ejections (CMEs)
- → dominant acceleration process (seed particles from alternative accelerator)?
- → time-dependent?
- → event dependent?

Aim: find new diagnostic for proton-related flares

Benz (2002)

in situ protons → remote-sensing HXR flare emission

(1) List of ~20 MeV in situ SOHO/ERNE proton events in the period: 1996–2017 http://newserver.stil.bas.bg/SEPcatalog/ [~660 events]

(2) Identification of the related solar flare: using a set of time, location and intensity conditions [~400 events]

(3) Accounting for gaps due to RHESSI data coverage (spacecraft launch in 2002, night-time, South Atlantic anomaly) [~70 events]

- hard X-rays wavelengths: 10–300 keV
- EM emission produced by collisions between electrons and ions: bremsstrahlung mechanism (electron scattering in the Coulomb field of ambient ions)
- > only remote-sensing observations

direct observations of HXRs

RHESSI satellite 12–25; 25–50; 50–100; 100–300 keV

I) <u>counts/s</u> (approximation)

II) photon flux(model dependent!)

- hard X-rays wavelengths: 10–300 keV
- EM emission produced by collisions between electrons and ions: bremsstrahlung mechanism (electron scattering in the Coulomb field of ambient ions)
- > only remote-sensing observations

direct observations of HXRs

RHESSI satellite 12–25; 25–50; 50–100; 100–300 keV

I) <u>counts/s</u> (approximation)

- hard X-rays wavelengths: 10–300 keV
- EM emission produced by collisions between electrons and ions: bremsstrahlung mechanism (electron scattering in the Coulomb field of ambient ions)
- > only remote-sensing observations

RHESSI browser

- hard X-rays wavelengths: 10–300 keV
- EM emission produced by collisions between electrons and ions: bremsstrahlung mechanism (electron scattering in the Coulomb field of ambient ions)
- > only remote-sensing observations

Data analysis: radio wavelengths

Mechanisms

- → particle acceleration as for HXR/ γ -rays
- → electrons ≈ 100 keV-10 MeV
- → gyro-synchrotron emission: 2–20 GeV

microwaves → proxy for HXRs

Data

Radio Stations Telescope Network (RSTN); 4 stations, ~24 hr coverage:

selection of 15.4 GHz (highest frequency possible) Figure 15.8: Microwave data during the 1993-Jun-3 flare, showing the radio intensity peaks

2011-02-15 (Learmonth)

Figure 15.8: Microwave data during the 1993-Jun-3 flare, showing the radio intensity peaks (contours) on top of a soft X-ray image from a filtered Yohkoh SXT/Al12 at 23:39 UT. Contours are 80% to 99% of the maximum intensities: 1.8×10^7 K at 5 GHz and 1.2×10^5 K at 17 GHz, respectively. The 5 GHz (looptop) source is produced by gyrosynchrotron emission, while the 17 GHz (footpoint) sources could be a combination of gyrosynchrotron and free-free emission (Lee & Gary 2000).

Data analysis: ultraviolet wavelengths

Data Solar Dynamics Observatory satellite

1600 Å

Ight curves constructed by spatial integration over the images

data after 2010: 22 events

Results: Correlation with proton intensity

Flare emission amplitude (flux/counts/sfu/	Correlation coefficients: flare emission vs. ~20 MeV proton flux [number of events]	
arbitrary units)	All	Well-connected/Western
SXR 1–8 Å	0.56±0.09 [70]	0.61±0.09 [52]
SXR derivative	0.48±0.09 [69]	0.50±0.10 [52]
HXR 12–25 keV	0.48±0.08 [70]	0.50±0.10 [51]
HXR 25–50 keV	0.50±0.09 [64]	0.50±0.11 [47]
HXR 50–100 keV	0.43±0.11 [55]	0.38±0.13 [41]
HXR 100-300 keV	0.41±0.12 [34]	0.42±0.13 [28]
Radio 15.4 GHz	0.55±0.10 [50]	0.62±0.11 [35]
UV 1600 Å	0.50±0.15 [22!]	0.43±0.20 [15!]

Correlation coefficients: CME speed vs. ~20 MeV proton flux 0.64±0.08 [65] 0.72±0.07 [50] We use non-thermal emission signatures (HXRs, microwaves, UV) in correlation studies with in situ proton intensities.

<u>Open ?s on the link between flares and SEPs:</u>

- Overestimation while using SXR/radio/UV flare emission?
- Flare contribution to SEPs only under specific condition (specific magnetic configuration)?

Possible directions of research:

- Test using HXR flux (model-dependent results)
- → Test for dependency on proton energy