Early-Stage SEP Acceleration by CME-Driven Coronal Shocks with Realistic Seed Spectra

Kamen Kozarev¹, Maher Dayeh², Ashraf Farahat³

¹Institute of Astronomy, Bulgarian Academy of Sciences, Bulgaria ²Southwest Research Institute, TX, USA ³King Fahd University of Petroleum and Minerals, Saudi Arabia

XIth Bulgarian-Serbian Astronomical Conference, Belogradchik 2018

Motivation

- Most dynamic region for CME evolution within 5 R_{sun} (Temmer 2016, Bein et al. 2011)
- Shocks can form as low as 1.2 Rsun in the solar corona (Gopalswamy et al. 2013)
- MHD+kinetic modeling shows protons can be accelerated up to 1 GeV in strong coronal shocks (Kota et al., 2005; Roussev et al., 2004; Kozarev et al., 2013)
- Many shock-like EUV waves observed in the corona (Veronig et al., 2010; Kozarev et al., 2011, Nitta et al. 2013, etc.)
- Can these accelerate SEPs?

Coronal Mass Ejections and EUV Waves

June 07, 2011 event

Data-Driven SEP Acceleration Modeling

- Global MHD and kinetic models are great we know everything about the system
- However, hard to constrain eruption driver and coronal conditions
- Difficult to apply to routine multi-event analysis
- Instead, use simpler models, driven by remote observations, for relatively quicker characterization

What do we need to model shock particle acceleration?

- Shock Kinematics and geometry
- Magnetic field strength & orientation upstream of shock
- Density & density change at shock
- Scattering conditions
- Source particle populations

Off-limb CBF Characterization – CASHeW Framework

Current CASHeW methodology:

- Radial kinematics estimation (within AIA field of view)
- 3D Coronal Shock Geometric Surface (CSGS) model spherical (from single-view)
- Determination of field-front crossing point locations, and angle Theta $_{BN}$
- B field, Density change estimation (DEM model of Aschwanden et al. 2011)

OCBF Characterization

The coronal shock parameters can be / have been used to drive shock acceleration models (as in Kozarev & Schwadron, 2016)

Multi-OCBF Event Study

,	Date	CBF Start	Source Location	Flare Class
	03/27/2011	05:02	E78N14	_
	05/15/2011	23:30	W44N09	C4.8
	06/07/2011	06:20	W44S21	M2.5
	08/04/2011	03:50	W38N20	M9.3
8	10/20/2011	03:05	W88N20	M1.6
	05/26/2012	20:30	W89N24	_
	11/19/2013	10:15	W71S19	X1.0
	12/07/2013	07:15	W47S15	M1.2
	12/12/2013	03:03	W60S27	B2.2

03

05/15/2011

Events selected on basis of OCBFs present and source beyond 40 degrees from Sun center

OCBF Parameters

06:2206:2306:2406:2506:2606:27

Theta_{BN} [deg]

Speed [km/s]

Analytical data-driven DSA model

A first step towards remote data-based early-stage SEP prediction

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} - \frac{\partial}{\partial x} \left(\kappa \frac{\partial f}{\partial x} \right) + \delta x \frac{u_1 - u_2}{3} \frac{\partial f}{\partial \ln p} = Q_0 \delta x \delta (p - p_0)$$

$$\begin{array}{lll} f_1 &=& \frac{3Q_0}{\Delta u p_0} \left(p_1/p_0\right)^{-\gamma_1} & p_1 &=& p_0 \exp\left(\frac{\Delta t \Delta u_1}{3\delta x_1}\right) & \gamma_i = 3r_i/(r_i - 1) \\ f_i &=& f_{i-1} \left(\frac{p_i}{p_{i-1}}\right)^{-\gamma_i} & p_i &=& p_{i-1} \exp\left(\frac{\Delta t \Delta u_i}{3\delta x_i}\right) & r_i = u_1/u_2 \\ \end{array}$$

$$\begin{array}{lll} \kappa = \kappa_{\parallel} \cos^2(\theta_{BN}) + \kappa_{\perp} \sin^2(\theta_{BN}) & \text{where } \kappa_{\parallel} = v\lambda_{\parallel}/3, \text{ and } \kappa_{\perp} = \kappa_{\parallel}/[1 + (\lambda_{\parallel}/r_g)^2] \end{array}$$

- Solves analytically for the diffusive shock acceleration of ions
- Developed specifically to take parameters from the CBF characterization
- Accounts for minimum injection momentum
- Ad-hoc scattering conditions (constant mean free path currently)
- Source population taken from coronal kappa distribution

Kozarev & Schwadron, 2016

Data-driven DSA model - Validation

Run Name	$V_{shock} \ [km/s]$	B [G]	$\theta_{BN} \ [deg]$	r
А	800	5.0	85.0	2.6
В	400	5.0	85.0	2.6
\mathbf{C}	800	5.0	5.0	2.6
D	400	5.0	5.0	2.6
Е	800	5.0	85.0	1.3
\mathbf{F}	400	5.0	85.0	1.3
G	800	5.0	5.0	1.3
Η	400	5.0	5.0	1.3

Kozarev & Schwadron, 2016

Input Suprathermal Spectra

Date	CBF Start	Source Location	Flare Class	P[0]	P[1]	P[2]
03/27/2011	05:02	E78N14	_	3.58	1.86	1.98
05/15/2011	23:30	W44N09	C4.8	3.47	2.03	1.85
06/07/2011	06:20	W44S21	M2.5	2.6	1.94	2.28
08/04/2011	03:50	W38N20	M9.3	3.49	1.95	1.81
10/20/2011	03:05	W88N20	M1.6	3.25	1.39	1.70
05/26/2012	20:30	W89N24	_	3.46	2.16	3.63
11/19/2013	10:15	W71S19	X1.0	2.78	1.37	1.57
12/07/2013	07:15	W47S15	M1.2	3.65	1.98	2.37
12/12/2013	03:03	W60S27	B2.2	2.79	1.57	2.89

- ACE/ULEIS+SIS Oxygen observations from a recent study (Dayeh et al., 2017)
- Quiet-time, pre-event suprathermals (0.05-0.55 MeV); no source particles beyond 0.55 MeV
- Scaled to p⁺ fluxes, assuming relative O abundances of 0.064 +/- 0.01% (Reames 2014)
- Scaled to 1.05 R_{sun} assuming 1/R² flux dependence

Resulting Spectra – 06/07/2011 event

Resulting Spectra

Conclusions and Prospects

- High-cadence, high-resolution remote observations with AIA, combined with data-driven models allow estimation of wave/shock kinematics, density changes, magnetic field. These can be used to drive SEP acceleration models.

- A multi-event study of OCBFs has been carried out to estimate the amount of acceleration on protons during the very early stages of 9 eruptions;
- We have used the time dependent properties within the AIA FOV to drive directly a DSA particle acceleration model
- We find a range of maximum energies reached and spectral indices
- Strong acceleration results from stronger shocks and longer acceleration times

Where we are headed:

- Improve the description of shock geometric shape, include lateral measurements
- Improve determination of shock scattering conditions

- Extend OCBF characterization to beyond AIA FOV (LASCO), include interplanetary transport to 1 AU for validation of SEP modeling results

Extra Slides

