### Magnetic field variability in RZ Ari – an evolved M giant

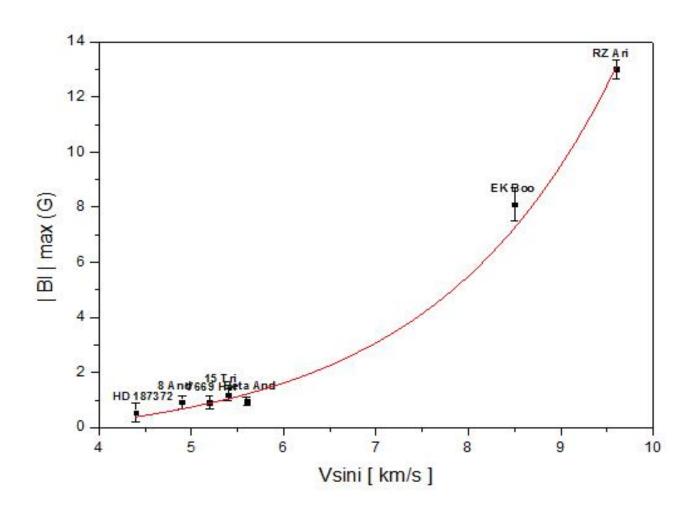
R. Konstantinova-Antova, A. Lebre, M. Auriere, R. Bogdanovski, S. Tsvetkova, A. Borisova, P. Mathias, B. Thessore, R. Zamanov, S. Boeva

XI-th Bulgarian-Serbian Astronomical Meeting, Belogradchik, May 2018

## Introduction

M giants weren't known to possess magnetic fields. Nevertheless, the theoretical predictions for dynamo operation on the Asymptotic Giant Branch (AGB), (Soker&Zoabi, 2002; Nordhaus et al. 2008, Brandenburg 2002), the data on magnetic activity in such stars were sparse and indirect (Huensch et al. 1998; Karovska et al. 2005; Herpin et al. 2006). We obtained direct Zeeman detections and measured with a high accuracy the longitudinal magnetic field in single M giants (Konstantinova-Antova et al. 2010; 2013; 2014).

Here we present the results of about 10 years magnetic field study of RZ Ari – a single M giant with fast rotation.


### Our first sample single M giants

The M giants were selected on the basis of their faster rotation (Zamanov et al. 2008) and X-ray emission (Hunsch et al. 1998;2004). These stars were observed with Narval spectropolarimeter since 2008. Data for them are presented below (Konstantinova-Antova et al. 2013).

| Star     | Other Name  | Sp class | vsini<br>km/s | log Lx D    | etection | Bl max<br>G | σ<br>G |
|----------|-------------|----------|---------------|-------------|----------|-------------|--------|
| HD130144 | 4 EK Boo    | M5III    | 8.5           | 30.30-31.50 | ) DD     | -8.10       | 0.60   |
| HD6860   | beta And    | MOIII    | 5.6           |             | DD       | -0.95       | 0.16   |
| HD16058  | 15 Tri      | M3III    | 5.4           | 30.80       | DD       | 1.19        | 0.21   |
| HD18191  | RZ Ari      | M6III    | 9.6           |             | DD       | 13.01       | 0.33   |
| HD150450 | ) 42 Her    | M2.5III  | 2.5           | 29.41       | nd       |             |        |
| HD16700  | 5 V669 Her  | M3III    | 5.2           |             | DD       | -0.90       | 0.24   |
| HD184786 | 6 V1743 Cyg | M5III    | 7.8           |             | nd       |             |        |
| HD187372 | 2           | M2III    | 4.4           | 30.64       | MD       | 0.54        | 0.34   |
| HD219734 | 4 8 And     | M2III    | 4.9           |             | MD       | -0.93       | 0.24   |

**RZ** Ari is the star with largest Vsini and strongest MF in our sample!

## Rotation



Konstantinova-Antova et al. 2013

## Observations and methods

2-m Bernard Lyot Telescope (TBL),Pic du Midi with NARVAL spectropolarimeter (Auriere 2003).

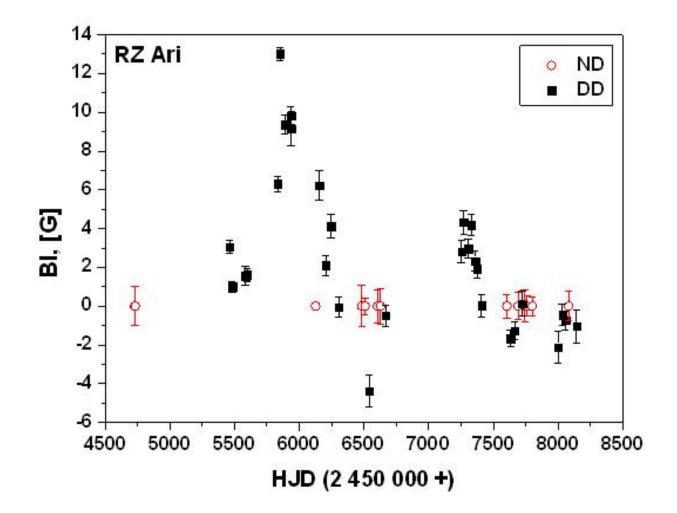
NARVAL was used in polarimetric mode with a spectral resolution of about 65000.

Stokes I (unpolarised) and Stokes V (circular polarization) parameters were obtained.

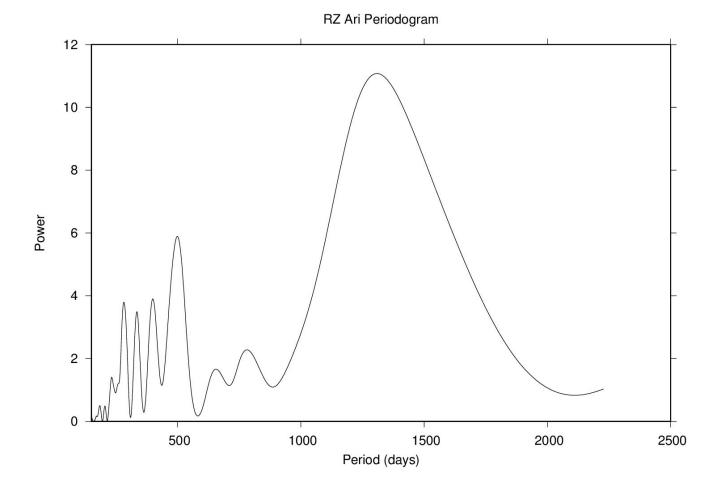
The extraction of the spectra was performed using Libre-ESpRIT (Donati et al. 1997), a fully automatic reduction package installed at TBL.

For the Zeeman analysis, Least-Squares Deconvolution (LSD, Donati et al. 1997) was applied to all the reduced spectra. BI is measured on the basis of Stokes V and I profiles (Riess & Semel 1979).

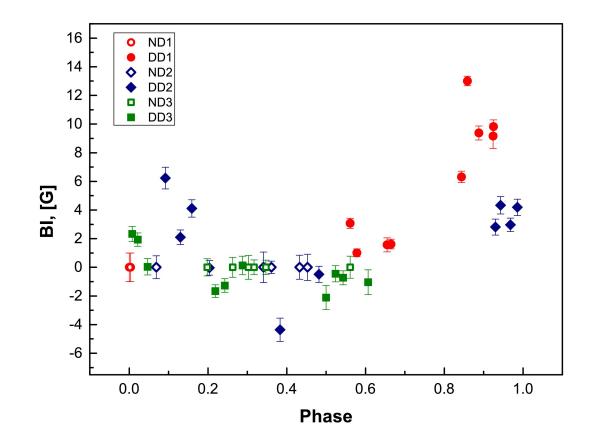
## RZ Ari = HD 18191:


Sp class: M6 III Teff=3450 K, log (L/Lsun) = 3.11 Vsini = 9.6 km/s M ~ 2.2 Msun => either tip RBG or AGB (Konstantinova-Antova et al. 2010)

## RZ Ari – additional data:


SRb variable star - P~50d; LSP~480d (Percy et al. 2008; 2016; Tabur et al. 2009)

Angular diameter d - 0.01022 arcsec (Richichi et al.2006) Distance r - 107.76 pc (Hipparcos; van Leeuwen, 2007) R\*= tg (d/2) x r = 117.2 Rsun - consistent with AGB phase


## RZ Ari – Bl variability Sept. 2008 – Jan. 2018



#### RZ Ari – period: Lomb-Scargle 1310 days, +85/-73 days, fap 0.3% LSP identified: 498d +8/-5d fap 35%



#### RZ Ari – phased Bl variability: P= 1310 d



## Future prospects:

- ZDI for RZ Ari
- identification of the LSP contribution to the MF variability;
- further quasi-simultaneous observations –
  spectropolarimetry + photometry desirable

## Discussion

# 1.Where early AGB stars stand in the context of the MF evolution:

After MS in intermediate mass stars convective envelope begins to develop. MFs are detected in Hertzsprung gap stars, at the base of the RGB and He-burning region on HRD and in tip RGB/ early AGB stars. Two reasons for their MF – either dynamo or Ap star descendants (Konstantinova-Antova et al. 2013; Auriere et al. 2015; Charbonnel et al. 2017).

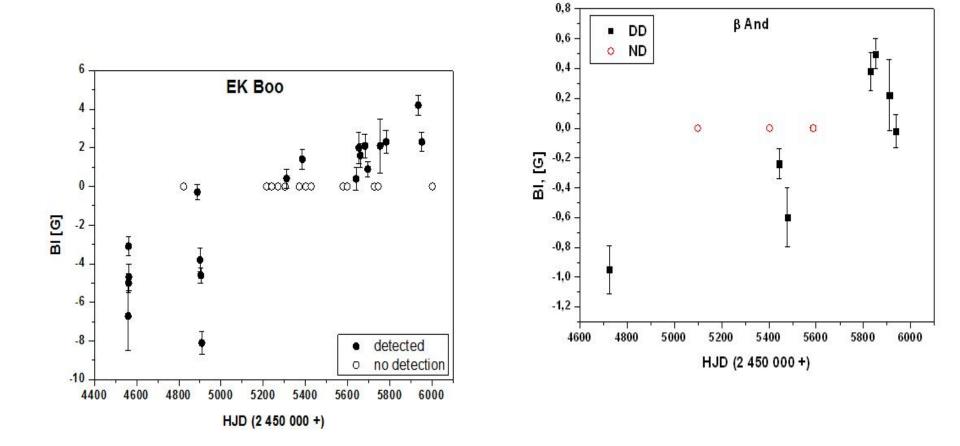
Later stage – AGB pulsating stars (Mira type star chi Cyg, Lebre et al. 2014). Weak MFs near max brightness detected as a result of shock wave propagation

**Work hypothesis:** early AGB stars are a case of transition between pure dynamo generated MF and shock wave compressed one

#### 2. What we know about LSP? (Percy et al. 2016)

LSP ~ 8.1 +/- 1.3 times the excited pulsation period No evidence for more than one LSP in each star Multicolor photometry showed that LSP color variations are similar to those of pulsation P The amplitudes vary by a factor of two on a timescale 20-30 LSP

Eventual mechanisms for LSP suggested:


- -the turnover of giant convective cells
- -oscillatory convective modes
- -dusty cloud orbiting the red giant
- rotation modulation due to spots

## •What could be concluded:

- In many cases Prot > LSP
- Color variations similar to those in the pulsation
  - Sine shape variability from photometry
- No evidence for giant convective cells in magnetic M giants (contrary to the supergiant Betelgeuse, Auriere et al. 2016; Mathias et al. 2018, in press)
  - RZ Ari not known as binary star
- **Conclusion:** LSP rather possible to be related to the pulsations than other reasons mentioned above

Do we observe an interplay between dynamo and pulsations in RZ Ari?

#### Long-term variability in other sample stars:



#### **Acknowledgements:**

We thank the TBL team for the service observing. The observations are granted with observational time under two OPTICON projects for semesters 2008B and 2011B, the Bulgarian NSF project DSAB 01/3 in 2010, the EU project BG 051PO001-3.3.06-0047 in 2012 and 2013, and the French PNPS program for the period 2015-2018. R.K.-A., R.B. and S.Ts. acknowledge partial financial support under Bulgarian NSF contract DN 18/2.



## Thank you for your attention!