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Abstract.

The present paper studies the dynamics of the Friedmann-Lemaitre -Robertson-Walker
(FLRW) cosmological model with a decaying vacuum energy density A in the presence of
an arbitrary spatial curvature k. Here, we consider three models: Model I-G = constant,
pa = constant, Model 1I: G # 0, pa = constant, Model III-G # 0, pa # 0. We take A as a
function of Hubble parameter H. In Model II since matter is not conserved here, we propose

3 .
an empirical expression of p,, to be p,, = %. Also in Model III, since G # 0, G does
not remain constant here. So, we consider that G varies with time through H through the

following relation: G = G, H(™Y/™  where G,,m € R and m > 0. The use of these expressions
benefit us in expressing various cosmological parameters in terms of redshift value z,. In the
recent years, analysing cosmological parameters graphically with respect to change in redshift
zr has become a vital matter in studying dynamics of the Universe in modern cosmology.
Here, we set up the dynamical system out of the field equations by introducing new set of
variables for each of the models and analyze the stability of the developed system in each
of the models. We find out the fixed points of the system in finite phase plane as well as
analysis of stability of fixed points at infinity using Poincaré sphere. The perturbation plots
for each of the axes are presented and the values of cosmological parameters have been
estimated for each of the models. In Cosmological parameters such as the equation of state
parameter for dark energy sector wge, total density parameter {2:otq1, the Hubble parameter
H and the deceleration parameter g are obtained as functions of redshift z, and their plots
over redshifts are also provided. From the plot of ¢ with respect to ©, we find the value of
transition redshift z,:. The present values of the above parameters are estimated and they
are in agreement with the observational data. For each of the models, we present the testing
of the model’s parameter space for the present values of H, ¢, the transition redshift z,:
and wg. for testing the significance of the discrepancy between the theoretically calculated
value and the observational data. It is found that all the cosmological models developed in
spacetimes of arbitrary spacial curvature support the accelerated expansion phenomena of
the evolving Universe.

Key words: Dynamical system, fixed points, Poincaré sphere, transition redshift.

Introduction

General Relativity (GR) is one of the most prominent theories that success-
fully describes the dynamics of the Universe. The discovery of the current
accelerated expansion model of the Universe in the last decades is one of the
successful achievements of modern observational cosmology [10,52]. This ac-
celerating behavior of the evolving Universe has been supported by several
other cosmological observations [2,7,11,43,58,59]. Motivated by Dirac’s large
number hypothesis in the thirties, the idea of varying gravitational constant
G that evolves with time was suggested and to accommodate this varying G
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extensions were being made in GR [5,33,37,38]. This idea was also disputed
by Teller [14] which was further qualified by Dicke [39,40]. Many researchers
have given immense contributions to explain the accelerated expansion phe-
nomena by putting forward other alternative theories. The Dark energy model
is one such model that provides the notion of negative pressure by introduc-
ing a cosmological constant A in Einstein’s equations of General Relativity
(GR) [41]. Also, we can mention the successful works in [15, 45, 47-49, 57]
based on modified gravity theory which aims at modifying the geometry of
spacetime. Further, various aspects and prominent ideas on modified gravity
theories from different directions have been considered in [1, 50]. Lima and
Maia have also investigated on a phenomenological decay law for A in the
framework of a flat Friedmann-Robertson-Walker (FRW) geometry [21]. Later
Lima and Trodden extended the main results of their previous work [21] in the
presence of arbitrary spatial curvature [22]. In [13], they have also analyzed
the curved Universe in a separate section. In a successful attempt to portray a
complete cosmological scenario including curvature effects in decaying vacuum
inflationary cosmologies [23], it is mentioned that the possibility of curvature
still deserves a closer scrutiny and also it is interesting to investigate what
happens when flat condition is relaxed in a more general treatment. A detail
explanation on the merits of proposing a large class of nonsingular cosmolo-
gies in solving several cosmological puzzles like the “graceful exit” problem,
the cosmological constant problem, etc, has been given in [24] where they fo-
cus on the C'M B entropy content generated by A(H) nonsingular cosmology.
In the recent years, using new theoretical techniques such as renormalization
group (RG) from the side of quantum field theory in curved spacetimes to-
gether with the usual phenomenological approach, a large class of dynamical
A(H) models involving even power series of H has been proposed [19,20,27].

Motivated by the above studies made on A(H) cosmology in arbitrary cur-
vature k, the present paper focus on the dynamics of the Friedmann-Lemaitre
-Robertson-Walker(FLRW) cosmological model with a running cosmological
constant A in spacetimes of arbitrary spatial curvature k£ in which we aim to
extend the system to a higher dimension in a more generalized way and study
the dynamics of the resulting model. Assuming that A evolves in power series
of H, we aim to set up a dynamical system by using the cosmological field equa-
tions and a newly introduced set of variables. We analyze the stability of the
developed dynamical system and their cosmological implications in the evolv-
ing Universe. Various cosmological parameters have been evaluated along with
the respective graphical analysis to explain the accelerated expansion epoch
of the present Universe. The discrepancy between the evaluated and the ob-
servational data has also been studied by comparing the evaluated values of
parameters with the known values in observational data. We arrange the paper
in the following way. In section 2, we show the setting up of dynamical system
equations from the cosmological field equations and the stability analysis in
three subsections that comprise of Model I-G = constant and ps =constant,

Model II-G # 0, p4 =constant and Model III-G # 0, p4 # 0. Cosmological pa-
rameters have been evaluated in order to perform deep analysis of the physical
interpretations and cosmological implications associated with them in each of
the subsections. In section 3, we show the testing of model’s parameter space
for each of the three models. In section 4, we give the conclusion to our study
with the corresponding cosmological implications of our theoretical findings.
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1 Setting up of dynamical system equations and stability
analysis

Let us consider the following Einstein field equations (EFE) in the presence
of cosmological constant A:

1
Ruu - §guuR = 87TGT/Wa (1)
where T}, is the ordinary energy-momentum tensor and Ty, = T, + guwpa
is the modified energy-momentum tensor. We have assumed the Universe to
be filled with a perfect fluid with U, as four-velocity vector field and the
above EFE describes the effective vacuum contribution with energy density

A = % with the associated pressure as py = wgeps where wge — —1.

Here we denote the density of matter-radiation by p,, and the corresponding
pressure by p,, = (y—1)pm. We use the expression T = —p;g,. + (pt +p:) U, Uy,
to describe the modified energy-momentum tensor where p; = p,, + p4 and
Pt = Pm + pA-

Using metrics described by the FLRW line element in the presence of a
curvature parameter [21,26,28,53], the EFE can be written as follows:

3k
87Gp; = 87Gpm + A = 3H? + = (2)

_ : 2 k
87Gp; = 8nGpy, — A= —2H — 3H” — pol (3)

where the overhead dot denotes the derivative with respect to the cosmic time
t.
Taking into account the general Bianchi identity V#G,, = 0 and using the

field equation (1), we consider the following relations:
VH(T;W) = V“[G<Tuu + g;wp/l)] =0.

So we have the following mixed local conservation law [17]:
d
G (m + pa)) + 3GH (pn + pm) = 0. ()

Taking motivation from the work of Aleksander Stachowski et al. [3], we
consider the following form of A(H):

— 1 "
AH) =Y ———AH)|(H*™
= A(H) = Ap + g H? + g H* + ... (5)

where Ag = A(H)|g and aa,, 's are the coefficients in the Taylor series expansion

of A(H) given by aw, = ﬁd?]_/[lz(f)\o, where n = 1,2, ....
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The above form of A(H) has been discussed in [6]. The dynamical systems
approach has also been used for qualitative study of various cosmological mod-
els in [44,55,56]. A detailed explanation regarding the contribution of only the
even powers of H can be seen from [12,18-20,25,30,51,54]. In order to study
the behavior of both the early and the late cosmos in a single unified frame-
work [16,17,25,51], we consider only the terms containing H?", n = 1,2 beyond
the term A,.

Now, using (5) in (3), we obtain the following relations:

: k
—92H — 3H2? = 871G (y— 1) pm — Ag — g H? — ay H* — ...,

: k
= 2H = Ag + (ag — 3)H? + ayH* + ... — 5~ 87G(v = )pm, (6)

1.1 Model I- G = constant, pp = constant

If both G and p4 are taken to be constants and if there are no other components
in the cosmic fluid, then matter is covariantly self-conserved and it evolves
according to the local covariant conservation law of matter-radiation [17] as
follows:

Pm + 37Hpm = 0. (7)

Let us introduce new variables x,y and z so as to construct the dynamical
system such that x = H?, y = 87Gp,, and z = z—é’ The variable z denotes
the usual z-coordinate measured along the three dimensional z-axis while z,
used in the subsequent analysis denotes the redshift parameter. We substitute
b = 4wGp4 for our convenience. Using these new variables, namely, x, y and
z with equations (2), (3), (6) and (7), we obtain the following autonomous
system of ordinary differential equations (ASODFE) to represent the dynamical
system:

2

a' = 372 =W, (8)
Y = =3y, 9)
2
2 =—22+ % - gZQ. (10)

Here, the overhead dash denotes derivative with respect to logarithmic time
©. Using the above dynamical system equations and relation (2), we get

fl(%b,0,0) as a fixed point of the above system. We take z # —3 to ana-
lyze stability in the finite phase plane. The Jacobian matrix J at f; is given

by:
0 —v %
Jp=10-3y 0 |.
0 0 =2
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The eigenvalues of Jy, are 0, —3vy and —2. The fixed point f; is non-hyperbolic
for any ~. So, let us study the behavior of perturbation functions along z, y
and 2 axes. For this, we perturb the system by a small amount and let Nz,
1y and 7, represent the perturbation along the z-axis, y—axis and z—axis
respectively. Then using equations (8), (9) and (10), we obtam

Nz = Co,

Ny = cre 39, (11)
— —2v6

Tz = C2€ )

where ¢,, ¢; and cp are arbitrary constants of integration. It is graphically
shown in Fig. 1 that the perturbations along the y and z axes decay to zero
as ©® — oo while 7, evolves to a constant value c¢,. This means f; is a stable
fixed point [34].

Now, in order to analyze the cosmological implications associated with this
model, namely, Model I, we obtain the expressions of the following cosmolog-
ical parameters as follows:

Equation of state for dark energy sector, wge:

—(z+3)z+y
Ay + oz + agx?’

Wde =
The total density parameter, {2;osq:

z
Qtotal:QA+~Q :§+1
In terms of redshift parameter, z, with the redshift function a(t) = ——,
we get,

2
) 2
(34 R (el gl ) (14 )Y
Wde = S 1 12 1 ) (12)
Ao+ az(cs +cgln m)?’ + ay(cg +cqln m)

win|

Wl

k(1 + z.)?

total = 1+ N
(c3+cqln m)s

The Hubble parameter, H is evaluated as follows:

)3, (14)

_“
(1+2)

W=

H=c

= ol

(In

where ¢; and ¢y are arbitrary constants of integration. The deceleration pa-
rameter, g is obtained as follows:

B (1+zr)

—1. 1
~ 3In (15)

Tee)
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The value of the transition redshift, z,; can be obtained as follows:

zrt ={2r 1 q, = 0}. (16)

The fixed points and their stability nature is shown in Table 1. It is well
known that the deceleration parameter determines the accelerating or decel-
erating behavior while the Hubble parameter decides the rate of expansion of
the Universe. So, we analyze the behavior of H(z,),q(z,) with respect to z,
by plotting the values of these parameters individually against z,.. This ge-
ometrical analysis allows us to study the late time behaviors of the evolving
Universe and the associated cosmological implications. Also, we can note down
the present values of the above parameters from the respective plot which will
be given by the ordinate of that point where the curve meets the vertical axis.
The present values of H, ¢, wge and z,; are noted in Table. 2. As seen from
the plot shown in Fig. 5, the Hubble parameter is a monotonically decreasing
function of z, and it increases with the decrease in z,. At late time when z,
tends to —1, the value of H tends to infinity which indicates that the rate of
expansion becomes infinite at late time. We again observe from Fig. 6 that the
deceleration parameter g decreases monotonically with the decrease in redshift
value. The negative value of the deceleration parameter, ¢ signifies that there
is accelerated expansion in the model universe. From this plot of ¢, we see
that the transition from the early decelerated regime ¢(z,) > 0 (corresponding
to (2 > zp¢)), into the current accelerated one ¢(z, < 0) (corresponding to
(zr < zp¢)) occurs at z,; = 0.721. For Model I, the value of z,; remains very
close to observational data [35]. The plot of wg. with respect to z, shown in
Fig. 7 helps us to analyze the phantom-like or quintessence-like behavior at
late time when the value of z, tends to —1. In this model, wy, evolves within
the phantom regime and at present time when z, tends to zero from the right,
wye tends to —1 from the left of —1, that is, wge < —1. This shows that
Model T exhibits effective phantom behavior at present with wge(2r0) ~ —1.02
which is compatible with observational data [35]. Hence, Model I supports the
accelerated expansion phenomena of the evolving Universe.

1.2 Model II- G # 0, pa = constant

Since G # 0, G does not remain constant here which indicates non-conservation
of matter [17]. As p4 is constant, the relation (4) leads to the following equa-
tion:

G(pm + pa) + Glpm + 3H (pm + pm)] = 0. (17)

Since matter is not conserved here, let us propose the following empirical
expression [36]:

_ f(t)poag

. (19)

Pm
where the expression f(¢t) = exp[n(In H — In H,)| determines how much the

expansion rate has changed from its initial rate H, at any given time ¢. Here,
a0, H, and p, denote the values of scale factor, Hubble parameter and matter
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density respectively at present time. The parameter n in the expression of
f(t) determines how rapidly the expansion rate changes with time. The ex-
pression of p,, in equation (18) describes the evolution of the universe’s density
providing a framework to explain cosmological phenomena that can describe
the distribution and evolution of matter within the universe’s spacetime. For
instance, n = 1 in the expression of f(t) indicates the universe expanding
with constant density, n > 1 indicates the universe where the expansion rate
is slowing down faster than the matter-dominated universe and n < 1 indi-
cates the universe where the expansion rate is slowing down, slower than in a
matter-dominated universe. The use of this expression of p,, also benefits us
in finding various important cosmological parameters in terms of redshift z,
which is a very essential part for understanding the dynamics and evolution
of the cosmos. Expressing in terms of redshift z,. independent of the variables
x, y and z represents a distinct aspect of the cosmological model by allowing
us to analyze graphically the dynamical behavior of the Universe in a more

efficient way within a small range of z, value, that is, z, € [-1,1].

Now, we consider new variables: x = 27;1%’, Yy = pm and z = ﬁ to set up

the dynamical system. Using these, (6) can now be expressed in terms of z, y
and z as follows:

. 3H? 2z
H = T(g — yzYy). (19)
Using (19) and the newly introduced variables in the above field equations,
we obtain the following ASODFE which will represent the dynamical system:
g do Lt
- de  Tde

,  —nayz | 3yna’y® 3y(y — Dy
= -
y+pa 2(y+pa) Y+ pa

where @ = In a denotes the logarithmic time with respect to the scale factor a.
The overhead dash denotes the derivative with respect to © while the overhead
dot denotes the derivative with respect to cosmic time ¢. Similarly, we get

— 222 + 3yzy, (20)

3 2
Y =nyz— W;y -3y, (21)
2 = =22 4 3yxyz — 2z (22)

From the above system, we obtain the following three fixed points: F7(0,0,0),
Fg(piA,O,O) and F5(0,0,—1). However, we will not consider F3 as this fixed

point is not physically feasible. To analyze the stability of the fixed points, we
will find the Jacobian matrix (J) at the respective fixed points.
Now, the Jacobian matrix at the fixed point Fj is given by

00 0
Jrn=[0-30 ],
00 —2
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Jr, is a diagonal matrix and Jp, is a triangular matrix whose eigenvalues
are given by the diagonal entries. So, the eigenvalues of Jr, and Jp, are the
same, namely (0, —3,—2). Both F} and F, are non-hyperbolic fixed points
as one of the eigenvalues vanishes. As they are non-hyperbolic, we cannot
use linear stability theory. Instead, we need to find the perturbation functions
along the x,y and z axes, we analyze their nature with respect to @. In a three
dimensional dynamical system, we can analyze stability of non-hyperbolic fixed
points by analyzing the nature of perturbation along each of the axes [56].

Now let us find the perturbation functions at F; and F, as functions of
logarithmic time ©. Now, we perturb the system by a small amount, x = 7,
y = ny and z = 1, where 7,, 1, and 7, represent small perturbations along x,
y and z axes respectively. With these perturbed system using (20), (21) and
(22), we obtain the following expressions of the perturbation functions at both
F1 and FQZ

Ne = doo
Ny = do1 €xp (_3@)
N, = dy2 €Xp (_2@)7

where dyo, do1 and d,o are arbitrary constants of integration.

In Fig. 2, it can be seen that the perturbation along z-axis, 1, evolves
to a constant value when © tends to infinity while both 7, and 7., being
monotone decreasing functions of ©, gradually decrease as @ increases and
finally decay to zero as © tends to infinity. So, we can conclude that F; and
F» are stable fixed points. Since the non-vanishing eigenvalues of Jp, and Jp,
are all negative and also as Fy, Fy are stable fixed points from perturbation
function approach, we can conclude that at late time, F; and F5 represent
stable attractors. The presence of the late time attractors in the system assure
the presence of negative pressure representing the accelerated expansion phase
of the evolving Universe.

To analyze stability at infinity in the infinite phase plane, we need to extend
the above rectangular coordinates to the Poincaré sphere S3 [42]. Through
stereographic projection, the upper hemisphere of S? is projected onto R? by
transforming the coordinates as x = %, y = %, z = % and X = =

VI
Y = \/W’Z_ \/WandW— \/Wforx_(X,KZ’W)ES with
|X| = 1 and for x = (x,9,2) € R3. Let us consider the dynamical system
equations

(23)
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where
— 3vnz?y?  3y(v—1
Pila,y, 2) = Y2 L STy (v — Dzy 9z + 3yay,
y+pa 2(y+pa) Y+ pa
3ynay?

Py(z,y,2) =nyz — 3y,

2
Py(x,y, 2) = =222 + 3yzyz — 22

Now, we rewrite the maximum degree terms in P;, P» and P3 by P, P,
and Pj respectively as follows:

— 2,2
Pl(xv Y, Z) = ;’(Zlfpi) + 3’}/.1'2]],
Pg(xa Y, Z) = _3’YnQIy27 (24)

Pg(ﬂj‘,y, Z) = 3’)/.%'11/2

In terms of X, Y and Z, we express the above polynomials as follows:

5 3ynX2Y?2 37X2Y
h(X,Y,Z) = 2(Y17:)AW)W3 + S

Po(X,Y,2) = — 5=, (25)
P3(X7 Y7 Z) = 3Ww§Z-

The critical points at infinity for the above polynomial system of degree 3
occur at the points (X, Y, Z,0) on the equator of the Poincaré sphere S3 where
X2 4+Y?2+272=1[29 and

XP;Q(X7Y7Z) - Y-Z?I(Xa}/az) =Y
XPy(X,Y,2) - ZP\(X,Y,Z) =0, (26)
YPy(X.,Y,Z) — ZPy(X,Y, Z) = 0.

Then, we substitute the values of Py, P, P3 in terms of X,Y and Z in the
above system of equations. Now, we express the above system of equations
(26) in terms of X, Y and Z as follows:

X (—3mXY2y _y(3mXY | 3 x2y) — ),
2
X(3yXYZ) - Z(3E 4 37X2%Y) =0, (27)
Y(3yXYZ) — Z(—3mXY%) _ g,

Noting that X2 + Y2 + Z2? = 1 must hold on the equator of the Poincaré
sphere and solving the above system, we see that the fixed point at infinity
occurs at S(£1,0,0,0). The flow defined by the system (23) in a neighbourhood

of S(#+1,0,0,0) € S? is topologically equivalent to the flow defined by the
following system:
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+y = —2nyzw + 3yny? — 3v2yw? + 6yyw? — 2wzy + 2w,
+2' = (2 —n)2?w + yz(?’%" —37) + (2 = 3y(y — 1)) zw? — 22%w? + 3ywyz,
tu' = —nzw? + 22 — 3y(y — Dw? — 2z20% + 3yyw?.

(28)

It is obvious that (0,0,0) is a non-hyperbolic fixed point of system (28)
where the Jacobian matrix at (0,0,0) is a null matrix which has all its eigen-
values as zero. Now, we perturb the system (28) by a small amount taking
Yy =1y, 2 =10, and w = n,,. By doing this, we can find the perturbation func-
tions along each of the axes as functions of @. If the system comes back to the
fixed point following the perturbation, then the system is stable, otherwise if
the perturbation grows, causing the system to move away from the fixed point,
then the system is unstable [34]. Nandan Roy and Narayan Banerjee [34] have
also used the concept of a perturbation function to analyze stability for non-
hyperbolic fixed points for three dimensional systems where linear stability
fails. Analysis using the perturbation function approach is also clearly shown
in [6]. Now considering the expression (28) corresponding to +y, +z and 4w
respectively, the expressions of 7,7, and 7, become

dny

_ 2
a0 3ynny,
L -1
My = 3vynO + Cr
Similarly, we obtain
N = CQ)
1
N =+

where C1, Cy and C5 denote the arbitrary constants of integration.

Since all of 7, . and n,, fail to grow as © tends to infinity which is shown
in Fig. 3, we conclude that the fixed point S(+£1,0,0,0) is a stable fixed point.
Since in a topologically equivalent system, all the topological properties share
the same behavior, we conclude that the fixed point at infinity of the original
dynamical system represented by (23) is also a stable fixed point which behaves
as a late time attractor and it contributes to the model with an accelerated
expansion epoch of the evolving Universe.

We obtain the value of the equation of state parameter for the dark energy
sector wye as follows:

Wde = @7 (29)
PA

where py = %(—QH—BHQ— ;%) —(y—1)pm and py = %(BHQ—F%) — Pm.-
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Substituting the value of H and necessary substitutions, we obtain wg. =
—1 at present time. This indicates that the Universe is associated with purely
cosmological constant type dark energy and the present model behaves as a
cosmological constant model. In terms of the redshift parameter z, with the
redshift function a(t) = ﬁ, we obtain the following expressions of the total
density parameter (2,41, Hubble parameter H and deceleration parameter ¢
as follows:

Qtotal = QA+Qm = 1—|—Z,

where the vacuum energy density 24 = 1 + z — xy and the matter density
2, = xy. Now,

3k(1 4 z,.)2
Dtotar = 1+ (—TD)l’ (3())
where D1 and Do are arbitrary constants of integration.
8mdy ds 3k1,2 5
H — M2 31
) {%(1—1-%)}% " 247Td2( 2 )3 (14 z)3, (31)
1 —8mdy 1

9(zr) = — s A (1+2)3  (32)

oyt T ona (2 (L a)s 305

e

)31 +2)3) 1,

(

727Td2 2

where k1 = 87rd2(927_37)k and do, d3 are the arbitrary constants of integration.

Also, the value of transition redshift, z,+ can be calculated using equation
(16). The plot for H with respect to z, is shown in Fig. 8. From this plot,
we see that H is a monotonously increasing function of cosmic time, ¢ and at
present where z, — 0 the present value of H takes H(z,,) = 71.06 which agrees
with the observational data [35]. At late time, when z,s — —1, the curve tends
to infinity which means that the rate of expansion becomes infinitely large.

The plot of ¢ against z, is shown in Fig. 9 and Fig. 10 for ky = %&273’7)
and k| = %?;37) respectively. The negative value of ¢ signifies there is

accelerated expansion in the model universe. We observed from Fig. 9 that
the transition from the early deceleration (¢ > 0) into the current accelerated

one (g < 0) occurs at z,; = 0.61 with the value of v taken as v > % so that the

constant kj remains positive in the expression of H. For v < % with positive
value of k1 = W the transition occurs at z,; = 0.74 which is clearly

seen from Fig. 10. Here, in the case of Model 11, we find that the transition

takes place at a relatively higher redshift for v < % while it tends to occur

at a relatively lower redshift for v > % Further in this model, wgze = —1 and
hence the model represents a purely cosmological constant type dark energy
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model. The plot of wg. with respect to z, is shown in Fig. 11. The fixed points
and their nature of stability are shown in Table 1 while the present values
of the above cosmological parameters are shown in Table 2. This describes a
dark energy model which supports the accelerated expansion phenomena of
the Universe.

1.3 Model III-G # 0, p4 # O:

Motivated by the idea that vacuum energy density p4 can be time dependent

[16], we consider here py # 0. As G # 0 and p, # 0, the relation (4) leads to
the following equation [17]:

G(pm + pa) + Gpa = 0. (33)
In order to achieve a possible unification of gravitation and elementary particle
physics, there have been many extensions of Einstein’s theory of gravitation
with time-dependent G and the possibility of increasing G has been observed
by assuming G o H~! [8]. When the Universe is required to have expan-
sion from a finite minimum volume, the critical density assumption and the
conservation of the energy-momentum tensor dictate that G increases in a
perpetually expanding Universe [8]. Taking motivation from these results, we

assume that G varies with time through H as G = G,H"Y™) where G,,
m € R are real constants, G, being the present value of G and m > 0. The use
of this expression of G will help us in finding H in terms of redshift z, in a sub-
sequent study. This further paves the way for other cosmological parameters
such as g, wge, etc that would help decide the fate of the future Universe, to be
expressed in terms of redshift. This not only allows to analyze the dynamics of
the Universe in late time as ¢ tends to infinity, but it also helps us to restrict
ourselves within the range z, € [—1,1] to understand and explain the whole
dynamics.

Using equations (2), (3), (7) and (33) along with the newly introduced

variables x, ¥y, z and ¢ such that x = g%ﬁ, Y = Pm, 2 = ﬁ and ¢ = py, we

get the following ASODE:

2 3,2 2 3
, Yz 3yxy TPz 3vx’yo 9 2xz
_ _ _ R (34
v m(z+1) +2m(z+1) m(z+1) +Qm(z—l—l) Ty 3 (34)
222 22 2z(z+1
y’:—7+3wz—*—w(2+1)+¥, (35)
x T 3x
2 = =222 4 3yayz — 22, (36)
1 3yzy® 3y
= S (yr — _ YOy 37
¢ =gz -5 T i =) (37)

Let us note that z #% —1 to analyze the system in a finite phase plane.
From equations (34), (35), (36) and (37), it is obvious that F'(b1,0, 0, b2) is the
fixed point of the above dynamical system, where by € R — {0},bs € R such
that biby = 1. The Jacobian matrix of the above dynamical system at F, Jp
is given by:
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—3~a3b 2 _ 2 2
0 5= +va” —a*b— % 0

o -4 "
_ —
Tr=1y 0 3% 9
-3 b
0 m 0

The above matrix has four eigenvalues: 0,0,—v and —2. The presence of
zero eigenvalues makes F' a non-hyperbolic fixed point whose stability can be
analysed through perturbation function approach. Let 7., n,, 1. and 14 denote
the perturbations along x,y,z and ¢ axes respectively. Then from equations
(34),(35),(36) and (37), we obtain the following perturbations as functions of
logarithmic time ©:

Nz = do3, o
Ny = d046_7 5 38
n, = d05€72@, ( )
N = d067
where dy3, dos, dos and dyg are arbitrary constants of integration.

From Fig. 4, we see that the perturbations along each of the axes fail to
grow as @ increases and it either evolves to a constant value or decays to zero
as O tends to infinity. Hence, F' is a stable fixed point. The expressions for
Waes $2total, H, ¢ and z.; are obtained as follows:

—z—1+2y
7o) ’
1otal = 24+ 2, = 1+ 2.
In terms of the redshift parameter z,; with the redshift function a(t) = %ZT.,
we get the following relations:
_(Z(Zr) + 1) + x(zr)y(zr)
z(zr)¢(zr) ’

Wde =

Wde = (39)

—2m—1

x(zp) = %{Dg In(1+ z,) + Dy} m+1 |
y(zr) = DsIn(1 + 2),

k(142,)2
{DsIn(142)+ Dy} e
2m
2 am
$(z) = MLtz Do Qe bDITEL (1 4 2,)%7,
77r3 © {Dg ln(1+zr)+D4} m+1

Now, the expression of the total density parameter (2,4, Hubble param-
eter H and deceleration parameter ¢ in terms of z. are as follows:

k(14 z.)?
Qtotal =1+ ( ) 2m_ (40)

{D3 ln(l + ZT) + 1)4}T

Z(Zr) = >
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De{D31In(1 + z,) + Dy} i1, m= L.
H(z) :{ 6{Ds In( r) 1} mo 4mt1 dn (41)
De{D3In(1 + 2,) + Dy} mrr Uy o2 L
Dam fDan(1 + 2,) + Dy}t — 1, m= -;
q(z) = "Dﬁ;{ slallt2n) + D) » o (49)
mi_l(—1>2m+l{D3 In(1+2)+ Dy} —1,m# 4,

where D3, Dy, D5, Dg are arbitrary constants of integration.

Also, the value of the transition redshift can be calculated using equation
(16). The fixed points obtained and their stability nature are summarized in
Table 1 and the present values of the parameters evaluated above, that is, H,
q, zrt and wye are noted down in Table 2. Fig. 12 shows the plot for H with
respect to z. and we find that the value of H increases as z, decreases, that is,
H increases with the increase in cosmic time ¢t. At present where z, = 0, we
obtain H(z,,) = 71.13 which is in consonance with the observational data [35].
At late time, the value of H tends to infinity. Fig. 13 shows the plot of ¢
against z,. where we observe that ¢ evolves from the early decelerated regime
and the Universe undergoes a dynamic phase transition from deceleration to
acceleration at z,, = 0.723. This is true for any arbitrary k. However, the
model describes a purely accelerating Universe if m = ﬁ, n = 1,2,3... as
supported from Fig. 14 where g remains negative in the entire [—1, 1] interval.
Fig. 11 shows the plot for wg. against z,. where it is observed that Model 111
exhibits a purely cosmological constant type dark energy model with wge = —1.
Hence, the model describes an expanding universe where the expansion is
accelerating and thus supports the accelerated expansion phenomena of the
current Universe which is in concordance with the observations [35].

2 Testing of model’s parameter space

In this section, we match the parameters to known values which are in agree-
ment with observational data to check the compatibility of the model with
what is being expected. For this, we shall first set a null hypothesis and then,
doing necessary calculations for the given data, we will find the value of y2.
If the calculated value of x2(x?(calculated)) is less than the tabulated value
of x?(x?(tabulated)), that is, x?(calculated) < x*(tabulated), then we con-
clude that the discrepancy is insignificant and hence, we can accept the null
hypothesis [46]. For instance, let us consider the parameter H(z,,) using (31)
for matching with the known values of H(z,,) based on observational data.

For example, consider the present value of H(z,) denoted by H(z,,) from
Model IT and set a null hypothesis as follows: Null hypothesis: “The theoreti-
cally calculated value of H(z,,) fits well with the observed data.”

The number of degrees of freedom, n = number of data collected — number
of constraints = 4—1 = 3, subject to one linear constraint (> O; = > E;),i =
1,2,3,4, where O; represents the observational data entries and FE; represents
theoretically calculated values.

Also the tabulated value of x? for 3 degrees of freedom at 5 percent level
of significance, x?(tabulated)g os= 7.815 [46].
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With respect to observational data in [35], we collect four data values of
H(z,,) and marked as O;;7 = 1,2, 3,4 as shown in Table 3. Then using (31), we

find the values of H(z,,) at different values of constants involved and marked
them as F;;0=1,2,3,4.

E;)?

Now, x? is expressed as x2 = 5 (01'577_ . From Table 3, it is found that the

calculated value x?(calculated) = 0.0108 which is much less than the tabulated

value x?(tabulated)g o5 = 7.815. So it is highly insignificant and hence, we can
accept the null hypothesis at 5 percent level of significance. Hence, we can
conclude that there is a good correspondence between the theoretical results
and the observational data.

Table 3 shows the matching of evaluated values of H(z,,) with known val-
ues based on observational data for all of the three models. In the similar way,
we show the matching of evaluated values for other cosmological parameters
such as q(zr0), 2zrt and wqe for all of the models in Table 4, Table 5, Table 6

and Table 7 respectively. From the tables it is seen that y?(calculated) <<

XQ(tabulated)o,og, and hence, we conclude that the calculated values of the
above parameters in all of the three models agree with the observational data
at 5 percent level of significance.

Table 1. Fixed points and nature of stability for Model I, Model II and Model III.

TFixed Type of Eigen- Wde Diotal Behavior
points fixed point values
Model T
f1(%b,0, 0), |non-hyperbolic Qtotal = stable,
2
b= 4nGpa 0,—3v,—2 14 —AOfen)” behaves as
(eateqln 757)3
~1, k= late-time attractor
Model IT
F1(0,0,0) [non-hyperbolic| 0, —3, -2 [~ —1 Qtotal =
stable,
F»(0,—3, —2) |Inon-hyperbolic| 0, —3, -2 |~ —1 1+ M behave as
47w Do In (1+7ir)
~1, k= late-time
S(+£1,0,0,0) [non-hyperbolic| 0,0,0 |~ —1 attractors
Model IIT
F(b1,00,b2) |non-hyperbolic|0,0,—v,—2|~ —1 Qiotal =
14 k(tzr)? > stable,
{D3In(1+4zy)+Dy} m+1 .
~1, k=0 late-time attractor
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Fig. 1. The figure shows the variation of 7n,,7ny,n. with respect to © for fi at ¢, = 0.5,
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Fig. 2. The figure shows the variation of n.,n, and 7. with respect to @ for F; at do, = 0.5,
dol - d02 =1.
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Fig. 3. The figure shows the variation of 7y, 1., 7. with respect to © for fixed point at infinity
S(£1,0,0,0) with C5 = 0.5,y = 5,02 = Cy = 1.
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Fig. 4. The figure shows the variation of 7, n,, 7. with respect to © for F' at doz = 0.5, dos =
dos = 1,dos = 0.3, v = 3.
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Fig. 5. The figure shows the graphical behavior of H(z,) in redshift for Model I at ¢1 =
1207, co = 4999.
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Fig. 6. The figure shows the graphical behavior of ¢(z,) in redshift for Model I at c2 = 3.06.
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wWye = -1.035
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Fig. 7. The figure shows the graphical behavior of wge in redshift for Model I at k = —1 :
cs =10,c4 = 1,c5 = —0.8, 4, = 5.3566 x 107"°, 0 = 0.26,004 = 046,y = 3, k=1 :¢3 =
2,ca=1,4, =5.3566 x 1071°, ap = 2.26, g = 0.48,vy = 2
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Fig. 8. The figure shows the graphical behavior of H(z,) in redshift for Model Il at k = —1 :
dy =0.0043,ds =1; k=1:dy =11.75,ds = 1, v = 3.
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Fig.9. The figure shows the graphical behavior of g(z,) in redshift for Model II at k =
_17d2 = 00043,d3 = 17’y — %
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Fig. 10. The figure shows the plot of ¢ against z, for Model II at k = 1,d2 = 0.01,ds =
Ly=3.
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Fig. 11. The figure shows the plot of wge in redshift for Model II and Model III.
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Fig. 12. The figure shows the graphical behavior of H(z,) in redshift for Model IIT at v =
2.d2 =0.0043,d3 = 1,m = 1.

70



Dynamics of cosmological models with time varying parameters

T
08 B
0.6 ]
04l ]
02 B

o
0.0

_o2F Z,1=0.723
-04f ]
-06 4
. . . . . .
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 13. The figure shows the graphical behavior of ¢(z,) in redshift for Model III at D3 =
1,Dy = —0.878,m = 1.
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Fig. 14. The figure shows the purely accelerating behavior of g against z, for Model III at
m = %,D3 =1,Dy = —0.878.
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Table 2. Present values of cosmological parameters.

EoS Parameter Model T Model TI Model TIT Observations
H(2r0) 71.00, 71.6, 71.13,
c1 = 1207, (k=1:dy =17, |Ds=—1199,
co = 4999 ds=1,7= %)/ D, = 359999, 73+1.4[32]
(k=-1:v=13%, m=1
ds = 1,dy = 12.05)
q(zr0) —0.70 —0.46
(k=-1,v=13, —0.72
d2 =0.0043,d3 = 1)| (D3 =2, | —1.0840.29 [9]
e = 3.06 —0.54 Dy = 0.42,
(k=17=3, m=3)
d2 =0.01,d3 = 1)
Zrt 0.721 0.61, 0.61 (k=1),
(k=-1,v=1, 0.716 0.73(k = —1) [13]
ds =0.0043,d3 = 1)| (D3 =2, 0.72(k =0,
co = 3.045 0.74 Dy =0.42, A CDM) [31]
(k:177:%7 m:%)
ds =0.01,d3 = 1)
—1.03571
wde (2ro) (k=-1:Cs = 8.7,
Q2 — 2, Oy = 6.4);
(k=1:C5=0.625, -1 -1 —1.03 +0.03 [25]
Oy = 3.49, oy = 2.9),
Ay = 5.3566 x 1071,
C3=Cys=1,yv= %
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Table 3. Matching the predicted value of H(z,,) against the observational data.

Known value] Theoretically calculated value Model T Model IT Model TIT
(0)) (Model I, Model II, Model III)
(from
observational (Eni, E2i, E3i), X%i_(oi ElEYM)Q X3:= (Oig2 ,2”2 X%i:(oi ;33 YSi)z
data in [35]) i=1,2,3,4. ) ) ’
(71, 67.1, 71.02) 0.2390 0.0007 0.2413
66.88 for (E11 : 1 = 1207, ca = 4999);
(Ba1 :k=1,dy = 31.04,7 = 1;
k=—1,dy =59.75,y = 3,
dsz =1); (Es; : D3 = —1199,
Dy = 357911, m = 1)
(66.42, 68.0, 68.88) 0.0614 0.0029 0.0028
68.44 for (E12 : c1 = 1060, ca = 4990);
(Bag : k=1,dy = 31.89,y = &;
k=—1,dy =61.37y = 3,
ds =1); (Es2 : D3 = —1000,
Dy = 326798, m = 1).
(68.90, 70.5, 66.00) 0.0145 0.0051 0.2304
69.90 for (E13 : c1 = 1140.8, co = 4900);
(Baz 1k =1,dy = 34.28,v = 1;
k=—1,dy =6596,7 =3,
d3 = 1);(E33 : D3 = —1190,
Dy = 287496, m = 1).
(66.36, 67.28, 66.78) 0.0254 0.0022 0.0115
67.66 for (E14 : c1 = 1058.3, co = 4900);
(Baa : k=1,dy = 31.22,y = 1;
k=—1,dy =60.08,7 =%,
ds = 1); (Fa4 : D3 = —1199,
Dy = 297809, m = 1).
?:1 O; Z?:l Ey = Z?=1 Ey; = Z?:l E3i|x* = ?:1 X%i x> = Z?:1 X%z X° = 2 =1 X%i
=272.88 =272.88 =0.3403 =0.0108 =0.486
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Table 4. Matching the predicted value of g(zr.) against values known from observations.

Known value

_q(zro) =0;,

Theoretically calculated value
7(1(Z'ro) = Ejia
j=1,2,3i=1,23,4.
(Model I, Model II, Model IIT)
(B, in, Es;),
i=1,2,3,4.

X1i Ei;

Model T

2 _(0i—E)?

Model TT

Model TIT

i

2 _(0i—
2=

E2;

2:)?

2 _(0;—Es;)?
3= .

Es;

0.5978 [4]

(0.620,0.690,0.67)
for (E11 : c2 = 2.50);

(F21 : k=1,da = —0.00150;
k=—1,dy = —0.001263,d3 = 1);
(F31:m = %,Dg =1,

Dy = —1.014)

0.00079

0.01449

0.00778

0.5200 [6]

(0.690,0.540,0.60)
for (E12:¢5=3.00);

(Bas : k= 1,ds = —0.00196;
k= —1,ds = —0.00098,d3 = 1);
(F32 :m = %,Dg, =1,

Dy = —0.800)

0.04188

0.00074

0.01067

0.53024 [4]

(0.450,0.460,0.500)
for (E13:c5=2.00);

(E23 : k=1,d2 = —0.00162;
k= —1,dy = —0.000812,d3 = 1);
(Bss:m=1,Ds=1,

Dy = —0.70)

0.01431

0.02630

0.00183

0.65100 [6]

(0.69,0.62,0.60)
for (E14 = co = 2.79);
(Eaa:h=1,ds = —0.00228;
k= —1,dy = -0.00124, d3 = 1);
(F34:m = %,Dg =1,
Dy = —0.921)

0.00220

0.00145

0.00019

S, 0;=2.3,

S Eji=2.3,

=1

=2
=0.0

=1
4

O A
ol
e
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Table 5. Matching the predicted value of z,; from Model II against values known from
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observations.
Known value Theoretical value
of zpt of zp¢
2
(04), (Eq), (0: — B?| 9P
i=1,2,3,4 i=1,2,3,4
from [13] at y =3
0.46 0.0001 0.00022
0.45 at k = —1, d2 = 0.00354, ds = 1
0.45 0.0016 0.00360
0.49 at k= —1, dy = 0.00348, d3 = 1
0.61 0.0036 0.0059
0.55 at k = —1, d2 = 0.00429, ds = 1
0.58 0.0009 0.0016
0.61 at k= —1, dy = 0.00414, d3 = 1
> 0=2.1 Y E=2.1 X2 =3 Lo B)?
=0.011
0.55 0.0016 0.00291
0.59 at k=1,d2 =0.00797, d3 =1, vy = 3
0.66 0.0016 0.00242
0.62 at k=1,dy =0.00914,ds =1, v =1
0.74 0.0081 0.01095
0.65  |at k=1,d> =0.01004,dg =1,v= 1%
0.64 0.0081 0.01266
0.73 at k=1,d2 =0.00892, d3 =1, v = 3
S 0,=2.59 S Ei=2.59 X =3 QB
=0.029
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Table 6. Matching the predicted value of wge at present time against values known from
observation.

Known value
—Wde = O;

Theoretically calculated value Model T Model TT Model TIT
—wde = Eji
(Model I, Model II,Model III) [x?,= <Oi;iu>2
(Evi, Eoi, Es;)
j=12,3,
i=1,2,3,4.
(1.035, 1, 1)
for E11: (k= —1, a2 = 0.26,
ay = 0.46,c3 = 10), 0.00004 0.00084 0.00084
cy = 1,c5 = —0.58);
(k=1,00 = 2.26, 4 = 0.48
C3 = 2,04 = 1,(35 = 2.798),
Ay, =5.0356 x 10719 ~ = 4/3
(1.033, 1, 1)
for E12 N (k = 71,0&2 = 0.26,
g = 0.46, c3 = 10, 0.00071
ca =1,¢c5 = —0.56);
(k = 1, Qg = 2.26,0(4 = 0.48
C3 = 2,C4 = 1,05 = 2.806,
Ay =5.0356 x 10719 ~ =4/3
(1.020, 1, 1)
for E1s : (k= —1,a2 = 0.26,
oy = 0.46,c3 = 10), 0.00009 0.00090 0.00090
cs =1,c5 = —0.42);
(k=1,00 = 2.26, 04 = 0.48
C3 = 2,C4 = 17 Cs = 2.869,
A, = 5.0356 x 1070,y =4/3
(1.030, 1, 1)
for F1a : (k= —1,a2 = 0.26,
oy = 0.46, c3 = 10, 0.00071
ca =1,¢c5 = —0.528);
(k=1,00 = 2.26, 04 = 0.48
c3 = 2,(24 = 17 Cs = 2.8217
A, = 5.0356 x 1070,y =4/3
>, O Yo Bu=41~4 B =30 A = T X =2 X
=41~4 S Bai =31 Esi =0.00236 | =0.005349 | =0.005349
=4

2 _ (0;—E9)?%| 2 _ (0;—E3;)?
X2i=""F, | X3i=

Ea; Eg3;

1.029 [6]

1.060 [6] 0.00360 0.00360

1.030 [25]

1.003 [31] 0.000009 0.000009
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3 Conclusion

In this paper, we have presented an F'LRW cosmological model using dynam-
ical system analysis in spacetimes of arbitrary spacial curvature k. With k we
extend the system to a three dimensional dynamical one which is a more gen-
eralized way to analyze the dynamical behavior of the Universe. Here we have
discussed three models. In model I where both G and p,4 are constants, we

obtain one non-hyperbolic fixed point fl(%b, 0,0),b = 47Gp4 which behaves

as a stable attractor at late time. In Model IT where G # 0, we get two stable
fixed points F}(0,0,0), Fg(p%‘, 0,0) in finite phase plane and we also analyze
stability for fixed points at infinity where the fixed points at infinity lie on the
north pole of the Pontcaré sphere S represented by the point S(+1,0,0,0). In
Model ITI, we get a stable fixed point F'(b1, 0,0, bs) where by € R—{0},b2 € R
such that biby = 1. The fixed points for all of the three models and their na-
ture of stability have been tabulated in Table 1. The cosmological parameters
such as the Hubble parameter H(z,), deceleration parameter ¢(z,), transition
redshift z,;, and EOS parameter for the dark energy sector wy. are expressed
in terms of redshift z. for all the three models. The present values of these
parameters are noted down in Table 2 and they are all in agreement with the
observational data [9,13,25,31,32]. For Model I we get the present values as
H(Z.,) = T1,q(zr0) = —0.70, 2,4 = 0.723, wge(2r0) = —1.03571. For Model II
we get H(Z.,) = 71.06, q(zy,) ~ —0.5, z,y = 0.61 at k = —1, 2, = 0.74
at k = 1 and wge(zr0) = —1. For Model III, we have H(Z,,) = 71.02,
q(zr0) = —0.72, 2z = 0.716, wge(zr0) = —1. We find that in Model I, wge
evolves from a phantom region and approaches the value wge ~-1.03571 as
zr — 0 at present which is also graphically depicted in Fig. 14. Thus Model 1
shows effective phantom behavior while Model II and Model III represent
purely cosmological constant type dark energy models with wge = —1 at
present for any arbitrary k£ as shown in Fig. 16. It is also vividly seen in Fig.
9, Fig. 10, Fig. 11 and Fig. 12 that the value of the deceleration parameter ¢
in each of the three models remains negative in z € [—1, 0], that is, at present
as well as at late times. This behavior shows that the models describe the ac-
celerating Universe. Moreover, the monotonously increasing nature of H with
respect to cosmic time as shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8 indicates
that the rate of expansion becomes infinite at late time and this is true for all
of the three models. From the value of wg. >~ —1 that is obtained in each of
the three models, we conclude that there is negative pressure in the evolving
Universe and the presence of this negative pressure assures that our models:
Model I, Model II and Model III represent dark energy models that describe
the accelerated expansion epoch of the evolving Universe. It is observed that
the cosmological parameters fit well with the observational data in all the
three models. However for Model II the transition from early deceleration to
current acceleration tends to occur at a slightly lower redshift (later in time)
for k = —1 while at a slightly higher redshift (earlier in time) for k£ = 1. The
estimated values of H(zy), q(2r0), 2rt and wge are matched with the values
known from observational data and they are shown in Table 3, Table 4, Table
5, Table 6 and Table 7 respectively. The calculated value of y? is found to be
less than the tabulated value of x? for each of the parameters which depicts
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that the theoretically calculated values of H., , q(zr0), 2t and wge fit well

with the observational data. Hence, there is a good correspondence between
our theoretical findings and the observational data. All the three models sup-
port the accelerated expansion phenomena of the evolving Universe and the
Universe will continue to expand with acceleration at late time as cosmic time
t tends to infinity.
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