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Abstract. It is believed that in ancient times the most simple and affordable method
of predicting eclipses was based on the saros, an approximation to the time period of
the eclipse cycle. In many studies techniques for finding the saros through observations
of eclipses were considered, but the verification shows failure of these methods. In this
paper we propose an experimental method for detecting saros observing lunar eclipses.
Saros could be detected by analyzing the repetition periods of partial lunar eclipses with
the same phase. This requires regular observations of eclipses over 200 ÷ 300 years at an
average density of at least 30 observations per century. The observer should record the time
of the eclipse, its phase and the position of the shadow on the disk of the Moon. The paper
proposes an experimental method of determining the duration of draconic and anomalistic
months. The knowledge of these values allows to obtain "the saros relation", which Ptolemy
assigns to Babylonian astronomy. The determination of the duration of anomalistic month
requires the astrolabe or another instrument, which allows to measure the motion of the
Moon and time. It is shown that the еxeligmos, the better approximation of the eclipce
cycle, can be found experimentally through the observations of the solar eclipses too.
Key words: saros detection, finding the length of the lunar months, history of astronomy

Върху откриването на сароса

Михаел Г. Никифоров

Смята се, че в древността най-простият и сигурен метод за предсказване на затъмнени-
ята се е основавал на сароса, едно приближение на продължителността на цикъла
на затъмненията. Методи за намиране на сароса чрез наблюдения на затъмнания
се разглеждат в много изследвания, но те не издържат пректическата проверка. В
тази статия се предлага един експериментален метод за определяне на сароса чрез
наблюдаване на затъмнения. Саросът може да бъде намерен чрез анализ на повторяе-
мостта на частничните лунни затъмнения с една и съща фаза. Това изисква регулярно
наблюдение на затъмнения в течение на 200 ÷ 300 години със средна плътност поне
30 наблюдения на век. Наблюдателят следва да записва времето на затъмнанието,
неговата фаза и позицията на сянката върху лунния диск. Тази статия предлага
експериментален метод за определяне на драконичния и аномлиситчния месеци. Позна-
ването на техните стойности позволява получаването на "сарос отношението", което
Птоломей приписва на вавилонската астрономия. Определянето на аномалистичния
месец изисква астролaб или друг инструмент за измерване на движението на Луната и
времето. Показано е, че екселигмосът, по-добрата апроксимация на цикъла на затъмнe-
нията, може също да бъде намерен експериментално, чрез наблюдения на слънчеви
затъмнения.

1. Introduction

Any popular reference book or encyclopedia of astronomy provides informa-
tion that saros is a period equal to the duration of S = 6585 days (18 years
and 10.33 or 11.33 days), after which solar and lunar eclipses are repeated in
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the previous sequence. If in year T, in a certain geographical point an eclipse
was recorded, the date of the next eclipse, which can be predicted by using
the saros will be T +S. Because the saros contains fractional part of the day
”1/3”, not every predicted eclipse can be observed from the given geograph-
ical point. Triple saros (exeligmos) corresponds to almost a whole day and
its use provides a better ability to predict eclipses, which can be observed.

Ancient astronomers used the term saros as numeral, which means the
calendar period of 3600 years. It was used to express the so-called ”great
year” - the period after which the motion of the Sun, the Moon and the all
planets is repeated. In this sense, saros was used by Burros (2 BC), Abiden
(2 century AD), Sincellus (about 800 AD) and others [NEUG]. There are
other periods neros and sossos which correspond to the durations of 600 and
60 years. They also were used to express a ”great year”.

According to Ptolemy [PTOL], in the modern sense saros was used in
Babylon, as the repetition period of lunar eclipses. In addition, Ptolemy leads
to the so-called ”saros relation”, which binds the duration of saros and four
lunar months: 1 saros = 223 synodic months (return of phase) = 241 sidereal
month (return of longitude) = 239 anomalistic months (return of perigee) =
242 draconic month (return of latitude). However, he did not specify when
and how the saros was found, and how was found the ”saros relation”, which
implies knowledge of the ancient astronomers of the duration of the lunar
months.

The aim of this study is to find answers to next questions. In what way the
period of the repetition eclipses S = 6585.33 days could be found, which we
now call the saros? By what means could be determined the ”saros relation”?
What knowledge, astronomical instruments and observations are necessary
in order to detect saros and the ”saros relation”?

2. Attempts to search for the saros

One of the first attempts to explain the method of finding the saros belongs to
A. Pannekoek [PANN]. His idea is as follows. Babylonian astronomers knew
from observations that lunar eclipses occur in series. Usually a partial eclipse
with a small phase begins a new series. In the next eclipses the phase of the
eclipse is increasing, and the observer can register eclipses with a total phase
and finally, it begins to decrease. Then a break follows, when the eclipses are
not observed, after which begins a new series of eclipses. The author found
that in the period from 750 to 650 BC there were a four series of 5 eclipses in
row and a four series of 4 eclipses in a row, which were visible in Babylon. It is
possible, such fortunate set of realizations of the observed eclipses promoted
that an observers found that eclipses occur at series. This could lead to the
emergence of the simplest methods of eclipses prediction.

Pannekoek wrote out six series of eclipses that occurred in succession,
and he considered the distance of the Moon to the node for each eclipse. The
result was that in the first and sixth series of eclipses, the distances begin to
repeat itself, which means a repeating of the eclipses circumstances. In the
study Pannekoek used precision calculations. The Babylonian astronomers
had to be able to quite accurately measure the distance of the Moon to the
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node to make similar work. However, we do not know anything about the
existence of such observations and the necessary astronomical instruments.
In the Babylonian observations, which describe the position of the Moon and
planets relative to the fixed stars, the distances are expressed in the ”ammat”
and ”ubani” [PANN]. Analysis of these observations shows that they have
relatively low accuracy and suggests that the observations are visual. Instead
of the distances, the magnitudes of the phases of the eclipses can be used.
Magnitudes of phases can be evaluated by the naked eye, although such
assessment will be burdened by errors.

Nevertheless, the main problem in the Pannekoek’s approach is that for
any selected series of eclipses, about half of the eclipses can not be observed.
All penumbral eclipses cannot be registered by a naked eye, thus they have
to be excluded from consideration. In some cases, the Moon is below the
horizon. As an example, we selected set of the eight series, with a maximum
density of visible eclipses in the Babylon. For brevity, we excluded penumbral
eclipses, which finish each series. For partial and total eclipses the kind of
the eclipse phase is clarified. Eclipses, which may be observed in the Babylon
(the Moon was above the horizon) are marked in bold. As a result, in chosen
set there are three series, which contain five eclipses in a row, table 1.

N 1 2 3 4 5 6 7 8

1 17.02.683 14.08.683 07.02.682 03.08.682 28.01.681 22.07.681 16.01.680 11.07.680

P P T T P P

2 07.12.680 02.06.679 26.11.679 22.05.678 15.11.678 11.05.677 03.11.677 30.04.676

P P T T P P

3 01.04.676 24.09.676 21.03.675 14.09.675 10.03.674 04.09.674 27.02.673 23.08.673

P T T P P

4 18.01.672 13.07.672 07.01.671 02.07.671 28.12.671 22.06.670 17.12.670 11.06.669

P P T T T P

5 12.05.669 05.11.669 02.05.668 25.10.668 21.04.667 15.10.667 10.04.666 04.10.666

P P T T T P

6 29.02.665 24.08.665 17.02.664 14.08.664 07.02.663 03.08.663 28.01.662 23.07.662

P P T T P P

7 18.12.662 12.06.661 06.12.661 02.06.660 25.11.660 22.05.659 05.11.659 11.05.658

P P T T T P

8 12.04.658 06.10.658 31.03.657 24.09.657 20.03.656 14.09.656 10.03.655 03.09.655

P P T T P P

Table 1. Eight series of eclipses occurred in the period from 683 to 655 BC.

Eclipses of series (1) do not coincide with the eclipses of series (6), the
series (2) does not coincide with the series (7), and the series (3) does not
coincide with (8). The situation deteriorates even more, if we take into ac-
count the possible omissions of eclipses because of weather conditions or of a
small magnitude of phases. In addition, when drawing up the table, we used
the knowledge of the order of the eclipses in a series and in saros. Ancient



On the discovery of the saros 75

observers could compile a table of only of the registered eclipses, and as a
result the different lines of the table may be shifted relative to each other.
It also complicate the situation. So, to find saros by method of Pannekoek
seems to be not possible.

Developing the Pannekoek’s approach, V. Bronshten [BRON] excluded
from consideration penumbral eclipses. He folded the duration of the five
observed series of eclipses, added the four intervals between this series and
added the time interval between the last eclipse in the fifth series and the
first eclipse in the sixth series. As a result, the author received a period equal
to 223 synodic months, which represents a saros. However, after Pannekoek,
Bronshten, for some reason, did not take into account the circumstances
of visibility of eclipses. If from an arbitrary cycle consisting of a series of
eclipses we exclude unobserved eclipses, then after a saros we don’t get a
series of similar eclipses. This has already been demonstrated by table 1.
And if the first and sixth series of the observed eclipses differ from each
other, the periodicity disappears and with it the reason to fold the length of
just five episodes. In addition, because of the omissions of some eclipses, the
first partial eclipse in series (1) and (6) may not be observed. It also leads
to extra errors. Therefore, the saros is not possible to find by Bronshten’s
method.

Regardless of Ptolemy, a knowledge of the saros in Babylonia is confirmed
by deciphering the cuneiform texts LBAT 1414, LBAT 1415+1416+1417,
LBAT 1419 and LBAT 1428 (the so-called ”Saros Canon”). Saros Canon is
a compilation of lunar eclipses from 747 to 315 BC [STEE1]. Eclipses are
gathered in columns, each of them has 38 rows. Each row corresponds to the
date on which an eclipse is possible (or EP = eclipse possibility). The cycle
of 38 eclipses is equal to the length of 223 synodic months and represents a
saros. After passing of saros (223 synodic months) the sequence of eclipses is
repeated, therefore the following 38 eclipses are placed in another column.

Each column is divided by horizontal lines, which allows for allocating five
series of eclipses and determining their structure. Since as the beginning of
saros we can take each of the five series, the sequence may look like 8−7−8−
7−8, 7−8−7−8−8, 8−7−8−8−7, 7−8−8−7−8 or 8−8−7−8−7 [STEE2].
Knowledge of the saros scheme allows to make the prediction of the date
on which the eclipse is possible, and knowledge of the saros cycle duration
allows for sufficient accuracy to determine the time of the next eclipse in
saros [BRAC]. However, these considerations do not permit either to identify
the method of detecting saros, nor specify when the discovery could be made.
It is obvious that all of the above cuneiform texts represent a compilation
that could be done in 4th century BC, and even in later times, when saros
was already known. Knowledge of the scheme saros and the dates of actually
observed eclipses allows to sort the eclipses by saroses and determine within
each saros all the dates of the eclipse possibilities.

On the other hand, there are points of view according to which, saros
was known for a long time. For example, Brown [BROW, p. 205] assumes
that period saros was used to predict eclipses in 7th century BC. His opinion
is based on the text of 8502, which predicted an eclipse in 679 BC. In the
description of this eclipse, the visibility of Jupiter was mentioned.
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”All the things which have come to concern the land of Akkad. . . An eclipse
of the Moon and Sun in month III will take place. These sings are of bad
fortune for Akkad. . . and now, in this month IX, an eclipse will take place. . .
and Jupiter will stand in its eclipse.”

To predict the visibility of Jupiter during the eclipse ancient astronomers
should be able to accurately determine the time at which an eclipse will occur.
It is possible that in the 7th century BC a period of 6 lunar months was used
to predict an eclipses. However, this period does not allow to determine a time
of the eclipse with the required accuracy, because it is subject to significant
change due to the uneven motion of the Moon. Hence the author concludes
that this eclipse was predicted by the saros cycle, probably via an eclipse on
15 November 697 BC. It is estimated that an eclipse of 26 November 679 BC
could be observed in Babylon at the dawn of the Moon. Calculations show
that Saturn was placed in half a degree from the Moon, but rising of the
Jupiter occurred four hours later after rising of the Moon, when the eclipse
was over. Consequently the eclipse described in the text of 8502 does not
match the circumstances of the eclipse on 26 November 679 BC. Either we
are wrong in the dating of this text, or in the interpretation of the text.
Finally, even if the dating and the interpretation of the text 8502 are right,
to predict this eclipse it is possible to use another long time period. For
example, the eclipse on 26 November 679 BC was possible to predict by
period of repetition of eclipses of 7973.3 days and eclipse on 26 January 700
BC. In any case, Brown’s arguments are untenable.

Another argument of Brown shifts the date of saros detecting to the mid-
dle of the 8th century BC. In the beginning of plates LBAT 1413 and LBAT
1414 there are so-called ”strange numbers” (by Steele terminology) ”1, 40”
and ”1.50”. If we assume that these figures represent the time, expressed in
”us”, they can characterize the deviation of the period of 223 lunar months
of 6585 days. According to Brown, the existence of ”strange numbers” is an
evidence of using saros to predict eclipses. Brack-Bernsen and Steele don’t
agree from this point of view [BRAC, p. 187]. First, Brown’s assumption
means that there should exist regular observations of eclipses before 747 BC,
but we do not have knowledge for such observations.
Secondly, it is not always clear to what eclipses ”a strange numbers” are
related. The authors suggest that the number ”1.50” refers to the entire row
of the eclipses, but not only to the first eclipse. Finally, the authors showed
that ”strange numbers” are more consistent with the estimated duration of
saros in the later times. Therefore, Brown’s point of view on the use of saros
in the middle of the 8th century BC is extremely unconvincing.

Thus, we have considered various ideas about the method of the detecting
of saros and the time when this discovery could be made. Arguably, the
Babylonian astronomers knew the saros and, from a certain time, it was used
to predict eclipses. Moreover, the observations of previous centuries were
systematized and were included in the saros scheme. However, so far no any
workable method by which one could detect saros has been proposed.
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3. Searching for the saros by frequency method

Statement of the problem. Let’s consider the possibility of finding saros
by the method based on the allocation of the most frequently recurring inter-
vals (or quasiperiods) between eclipses. To do this, we choused a geographic
point, and formed the canons of lunar and solar eclipses, which can be ob-
served from this point during a sufficiently long time. We assume, weather
conditions always allow observing the eclipse, and the observer can register
partial eclipses with an arbitrarily small phase.
The searching algorithm of repetition periods of eclipses is formed as follows.
Let us have a canon of eclipses. Let’s take Julian date of the first eclipse in
the list, subtract it from the dates of the remaining n-1 eclipses and in result,
we obtain a set of periods t12÷t1n. Next, we’ll take the date of the second
eclipse in the canon and subtract it in similar way from the rest of the dates
of eclipses, and thereby we’ll obtain a set of periods t23÷t2n, fig. 1.

Let’s compare the length of the periods of the second set t2j , (where
j ∈ [3;n]) with the set of the first periods t1i, (where i ∈ [2;n] ). If for
some numbers i and j the equality t1i=t2j is correct, then the frequency of
this period t1i is increased per unit fi=fi+1. Otherwise, the set of periods
t12÷t1n is complemented by period t2j , t1(n+1)=t2j , which is credited with
the frequency equal to one fn+1=1. Then, we will take the third eclipse in
canon and repeat this procedure until all eclipses from the available list will
be used. As a result, we obtain a set of periods {t} and a corresponding set
of frequencies {f}. Due to the uneven motion of the Moon in its orbit, short
periods of recurrence of eclipse is prone to small changes. Therefore, when
calculating the frequencies we demanded approximate implementation of the
equality t1i ≈ t2j .

Initial conditions. To construct a canon of eclipses, we used interval
of T = 300 years, the duration of which corresponds to 16 saros. A point
of observation is preferable to select in a range of latitudes 30 ÷ 40 degrees.
The choice of the observation point between the northern tropic and mid-
latitudes is reasonable because here Greek, Chinese, Egyptian and Baby-
lonian astronomers carried out their observations. As the observation point
Cairo was chosen. In the result, we got the canon of 287 lunar eclipses and the
canon of the 100 solar eclipses, which will be used in the model calculations.

Searching for the period by the model canons of eclipses. Apply-
ing the above algorithm to the canon of lunar and solar eclipses, we obtain the
following results, fig. 2÷4. From fig. 2 follows that the frequency of eclipses
is grouped in the form of packets with an average repetition period of about
∼ 1200÷ 1300 days. Each package corresponds to some series of eclipses and
it consists of several frequencies, separated by an interval of ∼ 177 days.
However, in this experiment it is impossible to separately highlight the fre-
quency, which corresponds to the saros for all variants of calculation. Saros is
not the dominant period even in its ”frequency package” and it is lost among
the multitude of frequencies of other periods. Among the longtime periods
of recurrence of eclipses, exeligmos has the highest frequency, fig. 3. How-
ever exeligmos can not be confidently selected among other frequencies by
the analyses of lunar eclipses. Fig. 4 shows that exeligmos could be found by
observing solar eclipses. Even with the exclusion of the ”weak” eclipses with
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magnitude of phase less than 0.60, its frequency is higher than frequencies of
other periods by 2−3 times. Saros was not found even in the first two dozens
of the most intense periods, which have duration of less 7000d. Consequently,
it is impossible to find saros analyzing the observations of the solar eclipses.

Searching of the saros through the Chinese observations. To ver-
ify this result we used Chinese observations of the lunar and solar eclipses in
the period from 3th to 17th centuries [XU]. In contrast to the model canons,
the Chinese canons are more long-continued over time, but they have a much
lower density of observations. The results of calculations suggest that the
situation has not undergone a qualitative change, fig. 5, fig. 6.

Conclusion. The application of frequency method to the model canons
and the real canons of eclipses revealed that it is impossible to find the saros
among other periods of the recurrence of eclipses. According to observations
of solar eclipses, exeligmos can be found experimentally, as it proved through
an analyces of the Chinese observations.

4. Searching for the saros by modified frequency method

Modification of the algorithm. Let’s apply the frequency analysis to the
model canons of eclipses with one change. We will determine the frequency
of periods using only a pair of eclipses, which had approximately the same
phase. In this case we will use only partial eclipses, but all total eclipses
must be excluded. In view of the fact that the Earth’s shadow at about 2.5
times larger then the diameter of the moon, the total phase of the eclipse
can usually be achieved at different distances to the node. Among the partial
eclipses will use such eclipses, in which the observer had the opportunity to
register the time of the maximum phase. That is, part of the eclipse, which
occurred at rise or set of the Moon should be excluded from consideration.

Modern calculations allow to determine the magnitude of eclipse phase
with very high accuracy. Ancient astronomers estimated phase visually, so all
their estimates have some error. As a result, the eclipse at different phases
can be evaluated as equal, and vice versa. Therefore, we need to define the
characteristic value of the error of phase and take it into account in the fre-
quency analysis. It is known, that the ancient astronomers estimated phases
of the eclipses in ”fingers”, with total phase corresponded to 12 ”fingers”.
Hence, we can find that one ”finger” corresponds to the phase 0.08, which
probably is the limit assessment for the naked eye.

The error of the phase of partial eclipses, calculated for 11 lunar eclipses
Almagest was 0.56± 0.17 ”fingers” with a maximum magnitude error of 1.68
”fingers”. Note that the phase error distribution does not correspond to the
Gaussian distribution. Given all of the above, we assume that the estimate
of the error phase 1 point fairly accurately describes the error phase. In the
case of comparing the phases of the two eclipses, the total error may be less
than this value, if in the evaluation phase of each eclipse we are wrong in one
direction, or more then this value, if vice versa. On average, the error will
increase by

√
2 times and will be 1.41 ”fingers”, or ∆ϕ = 0.11. Thus, when

calculating the frequencies of periods we will select a pair of eclipses of the
model of the canon, if the condition ∆ϕ = |ϕ2 − ϕ1| ≤ 0.11 is valid.



On the discovery of the saros 79

Searching of the saros by the model canon of eclipses. Result of
application of the modified algorithm to the canon of lunar eclipses is shown
below, fig. 7. The highest frequencies correspond to the exeligmos, the saros
and the double saros. Given their multiplicity, it is not difficult to determine
that the saros is fundamental period. Variants of the calculations performed
for different values of the errors of the phases ∆ϕ = 0.05, ∆ϕ = 0.08 (fig. 6)
and ∆ϕ = 0.14 show the stability of the result. Application of the modified
algorithm to the canon of solar eclipses shows that saros can not be found
by observing of the partial eclipses. This result is quite expected, since the
value of the phase during a solar eclipse depends not only on the restoration
of latitude, but also on the location of the observation. In the case of lunar
eclipses there is no such dependence, so the method of selection eclipse phase
is effective.

As a result, it is shown that saros can be found by observing partial lunar
eclipses. However, the above case is an idealization, since in practice it is
impossible to register every eclipse over a long period. We distinguish two
independent factors, which may lead to loss of observations. The observer
can skip eclipses with a small phase due to their more difficult visibility and
shorter duration. In addition, there is a factor the weather, which reduces
the probability of observing the eclipse, regardless of its phase. To account
for these factors we have to make a model of loss of the observations.

Simulation of the losing of observations.We assume that the prob-
ability of registration ρ of the eclipse with the phase ϕ ≤ 0.5 equal to the
magnitude of phase, ρ = ϕ. In the case of ϕ > 0.5 we accept ρ = 1.0. This
means that the eclipse with the phase of ϕ = 0.10 placed into the canon with
a probability of 10%, the eclipse with phase ϕ = 0.50 with a probability of
50%, etc. For larger values of the phases of eclipses, this probability is equal
to 100%. We assume that the average annual probability of realization of
favorable weather conditions for observing the eclipse of ρobs = 0.8, which
corresponds to 292 days. This estimate is quite realistic for Egypt, Greece
and Mesopotamia.

By applying n times both probabilities to the canon of eclipses, we obtain
the realizations of the canon, which takes into account the loss of observa-
tions. For each realization of the canon, we compute the frequency of periods,
and after averaging, we obtain a set of mid-frequency repetition periods of
eclipses, fig. 8.

Conclusion. Our estimates show that during the observation period of
T = 300 years about ∼ 70 partial lunar eclipses can be registered for this
model parameters. This number of eclipses is sufficient to detect the saros, the
double saros and the exeligmos among the other periods. Reducing the time
of observations in 2 times, will lead to a twofold decrease in the frequency and
complicates the allocation of the required periods. Therefore, we can assume
that the minimum period of observations of lunar eclipses for the detection
of the saros is 200 ÷ 300 years at an average density of observations at least
∼ 25 (300 years) and ∼ 35 (200 years) of partial eclipses per century.
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5 Determination of the duration of the lunar months

Beside the challenge to detecting the saros, there is task of determination
the duration of the lunar months and ”the saros relation” that was reported
by Ptolemy: 1 saros = 223 synodic months = 239 anomalistic months = 241
sidereal month = 242 draconic month.

Determination of the duration of synodic month. The duration of
synodic month is easiest to define. We should take the time interval between
a pair of any lunar eclipses and divide it by the number of passed lunar
months. From the analysis of the ”Almagest” lunar eclipses it is known that
the average error in determining the time of the eclipse is about 30 minutes.
When the times of pair of eclipses are subtracted, the resulting error can
be smaller or larger by this value. On average, the error increases in

√
2

times and it is about 42 minutes. At the same, this error of 42 minutes
is evenly distributed over the number of revolutions of the Moon, and this
would reduce the error of determination of the duration of the synodic month.
For example, let’s take the interval between eclipses T = 300 years, which
contains approximately 3711 full moons. Then the error of synodic month
is ∼ 0.7 seconds or 8 · 10−6 days. The duration of synodic month defined
by the pair of eclipses is 29.530594d, which differs from the exact value on
the 6 · 10−6 days. If we divide 6585.33d at 29.530594d, we find that the saros
contains 223 synodic months.

Determination of the duration of sidereal month. The method of
finding the length of sidereal (star) month is reviewed in detail by Bronshten
[BRON]. Over one sidereal period Tsid the Moon makes a complete revolu-
tion on its orbit relative to the stars. Over one synodic period Tsyn the Moon
makes a return to the Sun (or phase). Since the Sun moves relative to the
stars in the ecliptic, it shifts during the sidereal month by some distance. The
Moon needs more time to overcome this distance, and therefore, the length
of the synodic period Tsyn is greater than the sidereal period Tsid. Thus, the
sidereal month characterizes the motion of the Moon, and synodic month
characterizes mutual motion of the Moon and the Sun. Therefore, the length
of synodic and sidereal lunar months is associated with the duration of side-
real year T . This means that knowing any two periods, the third period can
be calculated. Over the one lunation the Sun passes Tsyn/T part of the eclip-
tic. Over the one sidereal month, the Moon makes one complete turn relative
to the stars, but in order to catch up the Sun, it would need to overcame
extra distance (Tsyn −Tsid)/Tsid. Equating these values, we can express Tsid:
Tsid = T · Tsyn/(T + Tsyn). Using the known value of synodic months, and
different estimating the duration of the year [WAER] and [PTOL], we define
the corresponding duration of the sidereal month, Table 2.
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Author T , (source) T , (days) Tsid, (days)
System A 12; 22; 8 syn.m. 365.260299 27.321683
System B 12; 22; 7; 52 syn.m 365.259468 27.321678

Meton 365.25 + 1/76d 365.263158 27.321699
Kalipos 365.25d 365.250000 27.321625

Hipparchus 365.25 − 1/300d 365.246667 27.321607

Table 2. Determination of the duration of sidereal lunar month for different
estimates of duration of the year.

Note, that the durations of the sidereal months differ from each other
only after the fourth decimal place for any length of the year. It follows that
one saros contains 241 sidereal month.

Determination of the duration of draconic month. Let’s again use
the frequency analysis, but on this occasion we will select the eclipses not
only by magnitude and phase, but the position of the Moon relatively of a
node. In order that the period may contain a whole number of revolutions, it
is necessary that both of the pair of the eclipses occurred near the descend-
ing node, or ascending node of the orbit. So the description of the eclipse
should be conveyed to the information which part of the lunar disk (northern
or southern) was covered by the shadow. Table 3 shows six of the shortest
periods with the value of frequency f ≥ 7.

N Period Frequency Synodic month
1 1387.7 11 47
2 2775.3 12 94
3 3809.6 7 129
4 5197.3 10 176
5 6585.3 23 223
6 7973.3 9 270

Table 3. Six shortest periods with a biggest value of the frequency.

In the column No.2 the lengths of the periods were averaged over the
number of frequencies in the period. The ancients did not know the opera-
tion of averaging, but they could use the value which is known as mode in
modern statistics. To do so, they should round the periods and select the most
frequently occurring value. In addition, the accuracy of the determination of
the period is affected by the error of fixing the time of the eclipse, which is
estimate as about half an hour. Therefore, to simulate the data obtained by
ancient astronomers, we have to round the exact times of maximum phases,
which we use in the calculation, to a half hour. The column number 3 shows
the frequency of the repetition period, and the column No.4 indicates the
number of synodic months, which corresponds to the period. We can find
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that the periods can be expressed in terms of each other with a good preci-
sion: P2 = 2 · P1, P4 = P3 + P1, P5 = P3 + 2 · P1, P6 = P3 + 3 · P1. So let’s
take periods P1 and P3 for the future analysis.

Let us estimate the duration of the draconic month. The relation Tsyn >
Tdra can be found through the observation of the eclipses. To do this we have
to consider several eclipses in a row, which occurred near the same node.
It is not difficult to find that point at which the eclipse took place, moving
against the direction of movement of the Sun on the ecliptic. Consequently,
the longitudes of points in which the eclipses occur, are decreasing. This is
possible only when: Tsyn > Tdra.

Further, we use another well-known observational data that the mini-
mum time between eclipses τ is usually 6 months, τ = 6. Assume that in
some eclipse, the Moon has passed exactly in the node. At this time the
distance of the Moon to the opposite node is 29.53/2 = 14.77d. To simplify
the evaluation, we assume that the Moon moves in orbit uniformly. In the
next full moon, the node in which a month earlier there was an eclipse, will
overtake the Moon on Tsyn − Tdra = 29.53 − Tdra = x days, fig. 9. Accord-
ingly, each month, the opposite node will approach to the Moon on x days
and it will catch up the Moon through 14.77/x = 6 month. Hence it follows
x = 2.46d and Tdra = 27.07d. The estimate of Tdra is inaccurate, because we
did not take into account the size of the Earth’s shadow and we assumed that
the orbital motion of the Moon is uniform. Suppose that our assumptions led
to the error ±1d. Then the length of draconic month ranges from 26.07d to
28.07d.

We can find the duration of the draconic month by using the condition
that each of the period P1 and P3 contains an integer draconic months.
Considering the periods P1 and P3 we obtain a system of two equations
of the form ni ·Tdra = Pi, which contains three unknown variables. In general
case, this equation can not be definitely solved, but in our case the numbers
ni are integer and, moreover, there is a estimate for 26.07d ≤ Tdra ≤ 28.07d.
This allows counting on the possibility of solving the system of equations.

Let ’s take the first period P1 = 1387.7 and divide it by estimating
the length of draconic month P1/Tmin

dra = 1387.7/26.07 = 53.22 ≈ 54 and

P1/TMax
dra = 1387.7/28.07 = 49.4 ≈ 49. This means that period may contain

from 49 to 54 draconic months. From similar reasoning, we can find that the
period P3 contains from 135 to 147 draconic months. Dividing the value P1
by the series of the natural numbers from 49 to 54, we get 6 different variants
of the duration of the draconic month. Next, using similar method, we will
calculate the 13 possible variants of duration of draconic month, which are
corresponding to period P3, table 4. The coinciding numbers in two columns
are corresponding to the duration of the draconic month.
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n1 P1=1387.7 n3 P3=3809.6
49 28.3193 135 28.2185
50 27.7530 136 28.0110
51 27.2088 137 27.8066
52 26.6856 138 27.6051
53 26.1821 139 27.4065
54 25.6972 140 27.2107

141 27.0177
142 26.8274
143 26.6398
144 26.4548
145 26.2724
146 26.0925
147 25.9150

Table 4. Determination of the duration of the draconic month.

Formally, periods Tdra ∼ 27.21 fit best the criteria of search, which cor-
responds to n1 = 51 and n3 = 140. Let’s consider a less precise periods
Tdra = 27.75÷ 27.81 (n1 = 50, n3 = 137) and Tdra = 26.64÷ 26.69 (n1 = 52,
n3 = 143), which will be considered as an alternative variants. In order to fi-
nal selection, we will divide the greatest period P6 = 7973.3 by the estimated
duration of the lunar months, Table 5.

P6 = 7973.3 m
27.21 293.03
27.75 287.33
27.81 286.71
26.64 299.30
26.68 298.85

Table 5. Determination of the duration of the draconic month.

The dividing of period P6 leads to fractional balances for any cases except
the first case. Therefore, the required period is Tdra = 27.21d. Dividing saros
on Tdra we obtain the relation 223 synodic months = 242 draconic month.

Determination of the duration of anomalistic month.Let us turn
to the observations. Near perigee, the Moon has the highest speed and a
maximum angular size. Vice versa, near apogee, the Moon is moving with
the lowest speed and it has a minimum visible angular size. The ancient
observations with the measured diameter of lunar disk are unknown. Fur-
thermore, even such observations somewhere exist, they are unlikely to have
sufficient accuracy.
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According to Ptolemy, to clarify the length of the anomalistic month
Hipparchus used eclipses with the similar magnitude (i.e. phase) and their
duration. However, let’s note that the Hipparchus solved the problem of re-
finement and the duration of the anomalistic month was previously known.
Following the idea of Hipparchus, we supplement the modified frequency
method with an additional condition on the duration of eclipses. The du-
ration of a pair of compared eclipses should differ by less than 20 minutes,
∆t ≤ 20m . Let’s compare the new values of frequencies with the previous
calculation, which corresponds to ∆ϕ = 0.11 and any value ∆t, fig. 7. Obvi-
ously, with the appearance of conditions at ∆t, the frequency of those periods,
which contain the integer (or nearly integer) number of anomalistic months
do not change. The comparison of frequencies values shows, that saros and
exeligmos contains an integer anomalistic months. Perhaps the estimate of
an error ∆t ≤ 20m is unachievable for the time of Hipparchus and we have
to use assessment ∆t ∼ 30m and worse. In this case, the number of periods,
which contain the multiple number of the anomalistic month, will increase.
Note that the position of the Moon relative to its apogee does not affect the
possibility of occurrence of the eclipse. Therefore, in this case we can not
apply an algorithm that was used to determination for the duration of the
draconic month.

Let us turn to Ptolemy, again. He asserts that the Moon can have the
maximum and minimum speed at any sign of the zodiac. Consequently, the
measurements of the Moon speed existed in that times. It is possible to
measure, that the speed of the Moon at apogee is about 12 degrees per day
or 30 arc minutes per hour, and the speed of the Moon at perigee is about 15
degrees per day or 37.5′ per hour. If we compare the angular displacement
for 1 hour, then the difference will be about 7.5′. This value is less than the
characteristic measurement error of 10′. However, near the full moon it is
possible to observe the motion of the Moon during at least 8 hours. In this
case, the difference of angular displacement at perigee and apogee will be
about 55′, fig. 10.

From this figure follows that more determination of the position in the
apogee is more accurate, as the error value of 10′ corresponds to 6 points
(days) at apogee against to 8 points at perigee. In addition, the position of
the apogee can not be accurately determined by one or two observations.
However, if the motion of the Moon was observed near the apogee for several
days, it is easy to determine the position of the apogee relative to the fixed
stars up to a day. Since the speed of angular motion of the Moon at apogee
is about 12 degrees per day, the position of apogee may be determined with
an accuracy of 12 degrees. After one revolution, we can determine apogee
position with the same accuracy.
Then, the resultant error of a pair of observations will be in

√
2 times more

and will be about 17 degrees. Let’s coarsen this value to 20 degrees. Then,
instead of the true value of the rotation period of apogee ta = 8.85 years,
we obtain a possible range of its value from 8.36 to 9.37 years. From these
observations it is possible to determine the direction of the movement of
the apogee relative to the fixed stars. It turns out that the apogee is moving
forward on the ecliptic, hence, the duration of anomalistic month exceeds the
duration of the synodic month: Ta > Tsid. Now, let’s repeat the reasoning
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used to determine the duration of the sidereal month. Let the apogee shifts
to Ta > ta on revolution during one anomalistic month. During this time, the
Moon makes one rotation relative to the fixed stars, but in order to catch
up the perigee it need to pass extra distance Ta − Tsid)/Tsid. Equating these
values we have for Ta: Ta = ta ·Tsid/(ta −Tsid) . Substituting the edge points
of the interval Ta ∈ [8.36; 9.37], we obtain a possible range of estimates Ta =
27.541 ÷ 27.658d. Received interval is well corresponding to the exact value
of the anomalistic month Ta = 27.5545d. This result can be ascertained by
using of the saros, which contains an integer number of anomalistic month. If
we divide the estimated length of the saros on the duration of the anomalistic
month we get ratings: 6585.3/27.541 = 239.11 and 6585.3/27.658 = 238.76.
The nearest integer number of these two numbers will be 239, therefore, saros
contains 239 anomalistic months. Consequently, the refined duration of the
anomalistic month is Ta = 6585.33/239 = 27.5537d.

6. Conclusion

In this paper, we propose an experimental method for detecting saros based
on observing eclipses. It was shown, that the saros could be detected by
analyzing the repetition periods of partial lunar eclipses with the same phase.
This requires regular observations of eclipses over 200 ÷ 300 years at an
average density of at least ρ ∼ 30 observations per a century. The observer
has to register the time, phase of eclipse, and the position of the Earth shadow
on the lunar disk.

The experimental method of determination of the duration of the draconic
and anomalistic month was offered. The knowledge of these values allows to
get the ”saros relation”, which Ptolemy assigned to the Babylonian astron-
omy. The determination of the duration of the anomalistic month requires
the astrolabe or another instrument, which allows to measure the motion of
the Moon and time.

It is shown that exeligmos can be found experimentally trough the obser-
vation of the solar eclipses.
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Fig. 1. The algorithm of searching of eclipse repetition periods.

Fig. 2. Short time periods of recurrence of lunar eclipses calculated from the model data.
Hatched dark blue columns correspond to the variant of calculation, where all lunar eclipses
were used. Red columns correspond to the variant, in which frequencies is determined only
by a total eclipses.
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Fig. 3. Long time periods of recurrence of lunar eclipses calculated from the model data.
Dark blue columns correspond to the variant of calculation, where all lunar eclipses were
used. Red columns correspond to the variant, in which frequencies is determined only by a
total eclipses.

Fig. 4. Periods of a repetition of solar eclipses, calculated from model data. The red color
is denoted the variant where the phase of the eclipse exceed 0.6.
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Fig. 5. Periods of recurrence of eclipses, calculated by 154 lunar eclipses from the Chinese
chronicles

Fig. 6. Periods of recurrence of eclipses, calculated by 95 solar eclipses from the Chinese
chronicles.
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Fig. 7. Periods of repetition of the partial lunar eclipses with the same phase calculated
by the model canon. Dark blue color corresponds to the condition, ∆ϕ = 0.11 and the red
color corresponds to the additional condition ∆ϕ = 0.08.

Fig. 8. Periods of repetitions of the partial lunar eclipses with the same phase calculated by
the model canon. The calculation takes into account the probability of detection of eclipses
and the factors of weather conditions.
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Fig. 9. Figure illustrating the method for estimating the duration of draconic month. The
blue dashed circle denotes the Earth, the black circle - Earth’s shadow. At the initial
moment the ”red” node is in the Earth’s shadow, and ”blue” node is on the line of the
Earth - the Sun. With every passing month, the ”blue” node approaches to the cone of
the Earth’s shadow, and ”red” node removes away. Approximately, through 6 months, the
”blue” node enters the Earth’s shadow and an eclipse will take place.

Fig. 10. The visible movement of the Mood during 8 hours. Near apogee and perigee, the
character measurement error of 10′ is marked.


