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Abstract. On the basis of observational data a model of stellar visibility during twilight
was developed. The proposed model can predict the moments of beginning and ending
of stellar visibility. Theoretical estimates, defined on the basis of the model, are in good
agreement with the observational data of Ptolemy, Schoch and Schaefer.
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Модел на звездната видимост в полумрак

Р. Белокрилов, С. Белокрилов, М. Никифоров

На базата на наблюдателни данни е построен модел на звездната видимост по време
на полумрак. Предложеният модел може да предскаже моментите на начало и край
на звездна видимост. Теоретичните оценки, базирани на модела, са в добро съгласие
с наблюдателните данни на Птоломей, Шох и Шефер.

1 Introduction

The problem of theoretical determination of the moments of stellar visibil-
ity in twilight is of interest for historical-astronomical investigations. The
numerical calculation allows simulating the conditions of planets and stellar
visibility, depending on the conditions of observation and atmospheric con-
ditions. It makes possible to solve a wide class of problems in the field of
history of astronomy.

For the first time the problem of determining the conditions of heliacal
risings and settings of the planets was formulated and solved by C. Ptolemy’s
in the 13th book Almagest [Toomer, 1998]. From the observations, Ptolemy
calculated the so-called ”arcus visionis” for Mercury, Venus, Mars, Jupiter
and Saturn. To simplify, we will use the term ”arc of visibility” instead of
”arcus visionis”.

Arc of visibility γ is the sum of the altitude of a star H and the solar
depression below the horizon h at the time of observation: γ = H+h. In addi-
tion let’s note, the arc of visibility means a set of parameters H and h which
correspond to the minimum possible value of γ [Purrington, 1988], Fig.1. The
magnitude of the arc of visibility depends on the brightness of the star, its
spectrum, the difference of azimuths between the Sun and the star | ∆θ |,
and transparency of the atmosphere, which is characterized by the extinction
coefficient k. When the Sun goes down below the horizon the sky brightness
decreases, and more faint stars become visible. On the other hand, a star
follows the Sun toward the horizon, which leads to an increased atmospheric
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absorption in the direction to the star. It brings to decreasing visible bright-
ness of the star and to deterioration of the observation conditions. (During
sunrise the opposite situation is realized.) Thus, a stellar visibility is defined
by two inverse processes. At the beginning, the star appears in the twilight
after sunset, and then it disappears at some distance from the horizon. The
set of values H and h that defines the arc of visibility γ is achieved when the
time of stellar visibility during twilight is minimal.

Fig. 1. Determination of arc of visibility γ. H - stellar altitude, h - solar depression below
the horizon, θ - difference of the stellar and solar azimuths.

Let’s note one important detail. In general case H(t)+h(t) 6= const, that
is especially noticeable when | ∆θ |> 300. For example, suppose that at the
initial moment the Sun is exactly on the mathematical horizon, a star at a
certain altitude H. After a while, the Sun will have depression η, but the
altitude of star will differ from the value H − η. This phenomenon can be
easily explained for the case limit of a non-setting star. It is obvious that the
Sun will be going down below the horizon from the moment of sunset to the
moment of lower culmination, while a non-setting star will be ”sliding” along
the horizon. So a precise determination of the arc of visibility is possible only
by mathematical simulation.

Let’s note that Ptolemy defines an arc of visibility of the planet equal
to the Sun depression below the horizon at a time when the planet itself
is on the horizon [Kurtik, 1998]. If the altitude of the planet is equal zero
H = 00, atmospheric absorption is so great that observer is not able even
to register the Venus. However, by Ptolemy, the depression of the Sun is
a calculated value. It was determined from the arc which corresponds to a
minimum elongation of the planet, when a twilight visibility of the planet is
possible. The definition of the arc of visibility by Ptolemy can be reduced
to the determination of the arc of visibility by Parrington. Observing from
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Alexandria, Ptolemy specially carried out observations when the Sun and
the planet were located near the summer solstice. For this case the condition
γ = H(t) + h(t) ≈ const is true. Let’s assume that at the first moment t0,
the planet becomes visible in twilight at an altitude H ≈ 30÷60. At the time
t1, planet riches horizon, when it’s altitude is equal zero to H = 00. Then a
depression of the Sun at moment t1 is equal arc of visibility at the time t0:
γ(t0) ≈ γ(t1) = h(t1).

By the late 19th and early 20th centuries many cuneiform tablets with
various astronomical content had been found in Mesopotamia. In the so-
called ”diaries” the dates of heliacal rising and setting of the planets are
given. Since the dates of observation are known, it allows us to define the arc
of visibility for each observation. The text MUL.APIN contains observations
of heliacal risings of bright stars, whence we can get estimates for the values
of arcs of stellar visibility. On the basis of Babylonian data, Schoch [1924]
constructed a linear model γ(m) which allows to calculate the arc of visibility
for heliacal rises and settings. He estimates that model is applicable when
| ∆θ |≤ 250.

Among modern studies the greatest number of works devoted to the def-
inition of the visibility of the heavenly bodies belongs to Schaefer. In paper
[Schaefer, 1987], the author set the task to develop a model based on ”as-
tronomy and physiology,” which would describe the visibility of stars without
using Ptolemy’s concept of the arc of visibility. The main idea of Schafer’s
approach is that he calculates the brightness of the sky background in the
direction of a star at a time of observation. The sky brightness is recalculated
into stellar magnitudes and then it is compared with the brilliance of a star.
As result, the possibility of stellar visibility is determined.

The main difficulty of Schaefer’s model is that the distribution function
values ∆Pred − ∆Obs differ significantly from the Gaussian distribution (see
Fig.1), and it’s mathematical expectation is M(∆Pred−∆Obs) ≈ 5÷6. This is
evidence of the presence of systematic errors. It should be noted, that in this
assessment values | ∆Pred−∆Obs |> 10d were not taken into account although
they exist,as can be seen from the content of table 1, p. 20. Therefore, the
model has greater errors. Schaefer himself explains occurrence of such errors
by the presence of barely visible clouds near the horizon, which alter the
extinction coefficient during the observation. The extinction coefficient is
really likely to change, but it can be measured during setting of stars in the
vicinity of the horizon. In this case, the error of determination of extinction
coefficient will be minimal. On the other hand, in table 1 faint stars (ι Psc)
are present, their visibility is hardly possible at altitudes less than H ∼ 60.
For the majority of faint stars, the altitude above the horizon at which the
star can be observed would be even greater. With increasing altitude H the
value of total atmospheric absorption rapidly decreases. In this situation, the
influence of extinction coefficient (and errors of it determination) on stellar
visibility also decreases. Therefore, at least for some cases the dates mismatch
∆Pred − ∆Obs is reasonable to be explained rather by the inaccuracy of the
model than by the error of measuring the extinction coefficient.

The final study [Schaefer, 1993] contains a great number of theoretical and
background material, however, when the problem of twilight stellar visibility
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is discussed, the author refers to the previous works [Schaefer 1985], [1987].
It means that new results on this issue are absent.

Our aim is to develop a model that will be able to calculate a possibility
of stellar visibility for any arbitrary case.

2 The method of observation

To solve the raised problem, we had observed the appearance of stars during
twilight for three years and received more than 600 separate observations.
The bulk of the observations were conducted in Moscow, where it is rather
problematical to observe stars with magnitude less than 3.5m confidently,
due to the strong illumination of the sky. In this regard, we observed the
brightest stars, which luminosity exceeds the background of twilight sky.

The aim was to determine the moment of appearance (for evening obser-
vations) or disappearance (for the morning observations) of the stars observed
by the naked eye. Let’s note that evening and morning observations are not
equivalent. In the first case, the appearance of the star is expected in some
neighborhood and, first of all, observer has to find the star. In the second
case, the position of the star is known exactly and we need to fix the time of
it’s disappearance. This is a simpler task, so the morning observations should
be more accurate. In order to remedy for this situation, for evening observa-
tions, we marked the azimuth and the height at which appearance of a star
was expected. In addition, the stellar position was determined by using the
binoculars shortly before the beginning of visibility.

The estimates have shown that this procedure allowed to minimize the dif-
ference between evening and morning observations. In one session we watched
the appearance of several stars with different brightness. In the first exper-
iments time of the stellar appearance was rounded to one minute. In later
observations we fixed time of appearance of the first star and the moments of
emergence of all of the following stars were measured by stopwatch relative
to the first star.

3 The results of observations

Development of a simple model
Knowing the date, the exact time of observation and the geographic co-

ordinates, we calculated the depression of the solar disk below the horizon
and determined the angle between the star and the Sun. Figure 2 shows the
extreme conditions when Vega becomes visible. In this set we selected obser-
vations where the altitude of the star was greater than H > 400. Fig. 2, the
abscissa is the angular distance Vega from the Sun, which is minimal near the
winter solstice (∼ 620) and maximal around the summer solstice (∼ 1200).
The ordinate is the depression of the Sun below the horizon at the moment
of appearance of the star. From this figure one can draw several important
conclusions.
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Firstly, the minimum depression of the Sun below the horizon, when the
visibility of Vega is possible is hlim = −2.50.

Secondly, according to winter, autumn (x ∼ 900) and summer observa-
tions, this value can be realized during a year. It means that the value hlim
does not depend on the distance between the star and the Sun in the range
600 < x < 1200. If such dependence exists, it cannot be found due to errors.
Similar observations of Altair show that this range can be extended at least
up to 600 < x < 1500. Therefore, as an initial approximation, we assume that
the increase in the brightness of the twilight sky begins to exert the influence
on the visibility of stars at x > 600.

Fig. 2. Extremely conditions when Vega becomes visible.

Thirdly, according to the data, summer, autumn and winter observations
have different value for the variance of hlim. The variance of hlim is deter-
mined by two random processes, they are implementation of the extinction
coefficient and the probability of registration of the star. The minimum value
of atmospheric extinction is determined by Rayleigh scattering. The scatter-
ing of dust and aerosols is added to this value. Among all aerosols the greatest
influence on the extinction coefficient has a water vapor. Therefore, the varia-
tion of atmospheric absorption is associated primarily with the concentration
of water vapor, which is subject to local and seasonal changes.

Thus, the implementation of the minimal value of the extinction coef-
ficient is a random process. According to our estimates, the average error
associated with the probability of stellar registration is about ∆t ≈ 2 min-
utes, that corresponds to an error of the value of the solar depression below
horizon about ∆h ≈ 20′. It means that the extinction coefficient has the
greatest influence on the variance of D(hlim). According to our observations,
the highest probability of realization of clean atmosphere is achieved in the
autumn, when the variance D(hlim) reaches a minimum value.
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Finally, since we have determined the value of hlim for Vega, this star can
be used as a star-standard for assessing the transparency of the atmosphere.
If during observation we have found that Vega appeared at limiting value
of hlim = −2.50 ÷ −2.750, it means that a pure state of the atmosphere is
realized.

Similarly, the limiting values of solar depression h∗ were obtained for the
other stellar magnitudes. For observation, we selected stars by the following
criteria. Firstly, to exclude the effect of increasing the brightness of the sky
background at the approach to the sun, the distance between the star and
Sun has to exceed 600. Secondly, the brightness of the star should not be
significantly weakened by the atmosphere, so we used the stars for which the
height above the horizon at the time of observation satisfies the condition
H > 400. The observation results are shown in Fig. 3.

Fig. 3. The dependence of the extremely visible stellar magnitude mV on the depression of
solar disk below the horizon hS is given, according to Moscow’s observations.

As a result of observing 11 stars in the range of brightness from −0.04m

to 3.3m it was established that the dependence of the extremely apparent
magnitude m on solar depression below the horizon h is linear:

m(h) = −2.08 − 0.81 · h (1a)

In this case, both variables are equivalent. That is, on the one hand, knowing
the value of solar depression, we can define a value of extremely apparent
magnitude. On the other hand, the registration of a star with known mag-
nitude allows to determine the solar depression below the horizon at the
moment:

h(m) = −2.57 − 1.23 · m (1b)



56 R. Belokrylov et al.

This result has two drawbacks. Firstly, it is based on observations of stars
up to the third magnitude, so for fainter stars the dependence is unknown.
Secondly, the slope of the regression depends on the individual characteristics
of the observer. However, we do not know whether the eyesight of the observer
is typical of population or not.

In order to address these issues in the summer of 2010 amateur as-
tronomers R.O. Belokrylov and S.V. Belokrylov conducted a series of ob-
servations of stars in the village of Zolotarevka in Penza region. The main
object was to define the dependence m(h) for stars fainter than the third
magnitude and compare the results obtained by different observers.

To observe the following the stars were chosen: α Boo (−0.04m), α Lyr
(0.03m), α Aql (0.77m), α Cyg (1.33m), α CrB (2.23m), β CrB (3.68m), γ
CrB (3.84m), θ CrB (4.14m), ι CrB (4.99m), ι Lyr (5.28m). The first five stars
from the list we’ve seen in Moscow, while the rest stars are not available for
a Moscow observer. To eliminate the color effects, we selected the star color-
index which satisfies the condition |B−V | ≤ 0.2. The exceptions are Arcturus
(B − V = 1.23) and δ CrB (B − V = 0.80). We see the color of Arcturus,
so a correction for night vision is unnecessary. Observations of the star were
obtained simultaneously, so we added it to a set of the above mentioned stars.
We think that the addition of this star will rather clarify the dependence than
make a mistake because of color differences. From the results of observations
it follows that a linear relationship m(h) is true until hsun ≈ −80, which
corresponds to m ≈ 4m, Fig. 4.

Fig. 4. The dependence of the extremely visible stellar magnitude mV on the depression of
solar disk below the horizon hS is given, according to Zolotarevka’s observations.

After passing through this point further depression of the sun reduces the
dependence between variables h and m. It should be noted that for the faint
stars δ CrB, ι CrB and ι Lyr the accuracy of definition of the moment of stellar
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visibility is significantly worse than that of bright stars. The average error in
determining the moment of visibility of the bright star is about 2 minutes,
but for faint stars, it may exceed 10 minutes with the same transparency of
the atmosphere. Probably this effect is associated with the approach to the
threshold of sensitivity of the human eye, which roughly corresponds to the
6th magnitude.

Observations made in Zolotarevka can be approximated by the two re-
gressions, one of which describes the appearance of bright stars (2a) and (2b),
and the other - the faint stars (3a) and (3b):

m(h) = −1.95 − 0.80 · h , where h > −7.70 (2a)
h(m) = −2.44 − 1.25 · m , where m > 4.2m (2b)
m(h) = −2.78 − 0.18 · h , where h ≤ −7.70 (3a)

h(m) = 15.62 − 6.61 · m , where m ≤ 4.2m (3b)

The comparison of the two dependencies gives the transition point be-
tween the regression m ≈ 4.2m and h ≈ −7.70. The coefficients of regression
equations for the brightest stars for Moscow’s observations (1a), (1b), and for
Zolotarevka’s observations (2a) (2b) are identical within experimental error.
The coincidence of the slopes means that the observers have about the same
sensitivity of the retina. Therefore, we will assume that observers have ”stan-
dard” eyesight, which is not different from the view of most people. Penza’s
observations give fewer value of the free term in the regression equation due to
a lower value of extinction coefficient and a clean atmosphere. In general, the
maximum values of transparency of the atmosphere in Moscow and in Penza
are the same. It is because of the geographic coordinates of observation points
are about the same, and both cities are in the same climatic zone. Therefore,
layers of the atmosphere have similar physical characteristics, which lead to
the same values of the extinction coefficient.

Thus, for the brightest stars we use the equation with coefficients, aver-
aged under Moscow and Zolotarevka observations. As a result, the equations
describing the appearance of bright stars can be represented by:

m(h) = −2.01 − 0.81 · h , where h > −7.70 (4a)
h(m) = −2.47 − 1.23 · m , where m > 4.2m (4b)

For stars with glitter, we will use the equation describing the visibility of
faint stars, as determined from observations of Zolotarevka. As a result, the
model of the stellar visibility during twilight can be described by a system of
two equations.

In constructing the model we used extra atmospheric brilliance of the
stars and assumed that all the stars are attenuated by the atmosphere almost
equally. An execution of the latter condition was achieved by selection rule:
H > 400. The developed model is applicable for ”clean” atmosphere, because
we selected the best conditions of visibility of each star on many observations.
This state of the atmosphere corresponds to some coefficient of extinction,
which have to be determined. To find the value of atmospheric extinction, we
observed settings of bright stars of the most pure state of the atmosphere.
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We assessed transparency of the atmosphere by using Vega, which was
a star-standard. When a setting star was near the horizon, we estimate its
magnitude relative to the stars located at an altitude H > 400 and then we
determined extinction coefficient by the Bouguer law. As a result, the ob-
servations showed that in Moscow the extinction coefficient for the cleanest
air is k = 0.23 ± 0.02 per one atmospheric mass. With sufficient accuracy it
can be assumed that, on average, the stars were observed at 1.2 air masses,
which corresponds to the average absorption coefficient k = 0.23 · 1.2 ≈ 0.25.

Consideration of the atmospheric absorption.
To assess the visibility of stars at an altitudes of H < 400 it is necessary

to consider the absorption of the atmosphere. The total attenuation can be
expressed as ∆m = k·(F (z)−1) , where z is the zenith distance, k - extinction
coefficient, F (z) - the number of air masses in the direction to the star. Since
equation (4a) and (4b) were obtained for one air mass it should be subtracted
from the value F (z). There are many methods for assessing of the value F (z).
For example:

F (z) = [cos(z) + 0.025 · e−11 cos(z)]−1 (5)

Knowing the value of the light attenuation ∆m, we can determine visible
stellar magnitude, taking into account atmospheric absorption m′ = m +
∆m + (k − 0.25) and then substitute it in the appropriate equation h(m) =
−2.47 − 1.23 · m or h(m) = 15.62 − 5.61 · m (if m′ < 4.2m ). As a result, we
find the limiting value of solar depression hlim necessary for observation of
the stars. Term (k − 0.25) is need when the value of extinction coefficient at
the time of observation differs from the value for which was determined by
relation (1) and (2). This expression can be represented in general form:

m′ = m + k(F (z) − 1) + (k − 0.25) (6)

In the proposed model of atmospheric absorption we do not consider stel-
lar spectra. That is, we assumed that the blue and red stars are attenuated by
the atmosphere equally. In the matter of fact, this is not true because there
is an effect of atmospheric reddening and the Forbes effect, that atmospheric
absorption is reduced with increasing air mass. The influence of both of these
effects can be accounted for by an additional amendment to the formula (6).
The necessity of introducing such corrections and assessing of their values
will be discussed below in a separate paragraph. So far, we assume that these
effects are negligible.

Example No. 1. Verification of the model. Daytime visibility of Jupiter.
It follows from the dependence m(h) that at sunrise h = −(rsun + R) =

−0.850 (rsun apparent radius of the Sun, R a value of refraction near the
horizon) when the northern edge of the solar disk touches the horizon, we can
register stars with magnitude brighter than m(−0.85) = −1.41m ≈ −1.4m.
Further extrapolation h > −0.850 of the dependence is not applicable, since
the original model does not describe such conditions. However, we can accept
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that at a low altitude of the Sun above the horizon we have the marginal
estimate, which corresponds to h = −0.850.

During the observations of 30.06.2009, 01.07.2009 and 20.07.2009 we saw
Jupiter, when solar altitude was at the range of h = 0.90 ÷ 2.50. At the
time of observation the planet altitude was H ≈ 210, which corresponds to
2.8 air masses, and its extraatmospheric magnitude was mj = −2.6m. In
these observations Vega ceased to be visible when the values of solar depres-
sion were h(30.06) = −2.480, h(01.07) = −2.820, h(20.07) = −2.510. In the
first and the third cases observations were made at limit value of solar de-
pression hlim when Vega appeared. It corresponds to the most transparent
atmosphere of Moscow. The value h = −2.820 was obtained from the second
observation and it corresponds to limit value of Vega taking into account the
error ∆h = ±20′ = ±0.330. Consequently, for these observations, we can use
the value of extinction coefficient k = 0.25. Then, a planet magnitude is:
m′ = mj + k(F (z)− 1)+ (k− 0.25) = −2.6+0.25 · (2.8− 1)+ (0.25− 0.25) =
−2.6m + 0.45m = −2.15m

Substituting this value into the equation (4b) we obtain a value of so-
lar depression hlim, in which Jupiter can be seen under these conditions:
hlim = −2.47 − 1.23 · (−2.15) = −0.170 > −0.850 = h. Consequently, since
hlim > h the visibility of the planet in such conditions is possible. Another
way, we can get such conclusion by comparing the extraatmosphere magni-
tude of Jupiter with estimate of magnitude by formula (4a): m′ = −2.15m >
−1.4m = m(−0.850). Hence, the daytime visibility of Jupiter is possible.

Accounting of the sky background.
In all previous discussions, we used the stars moved away from the Sun at a
distance x > 600. In fact, the regression is based on the observations which
satisfy a more stringent condition: x > 800. At lower values x < 600 it is
necessary to consider the increasing the sky brightness, which grows when
the Sun comes near to the star.

To construct a model of the sky background, we used observations of
Arcturus and Vega. In summer, Arcturus appears by 1 − 2 minutes earlier
than Vega when both stars are removed from the Sun for more than 800.
In autumn, the minimal distance between Arcturus and the Sun is about
x ∼ 300 and at such distance Arcturus becomes visible 10 minutes later
than Vega. Let’s define the difference between solar depression in which Vega
and Arcturus become visible ∆hV A = hV ega − hArctur, depending on the
distance of Arcturus from the Sun x. We consider separately the behavior of
the function ∆hV A(x) when x > 600, Fig. 5 and x < 600, Fig. 6.

When x > 600 the dependence function ∆h1
V A(x) on the distance x is

absent, so it can be approximated by a constant ∆h1
V A = −0.140. In the case

300 < x < 600 the dependence ∆h2
V A(x) is linear: ∆h2

V A(x) = 1.82− 0.0338 ·
x. Differentiating the latter equation, we obtain the relation between the
differentials: d(∆h2

V A) = −0.0338·d(x). It means that in order to compensate
the increasing of the brightness of the sky background at the approach of the
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Sun to the star on 10 degree it is necessary extra depression of the Sun below
the horizon on 0.03380 degree.

Let’s note that determining the dependence ∆h2
V A(x) we took into ac-

count an amendment to an additional absorption of the light of Arcturus by
the atmosphere. This amendment considers the fact that during the closest
approach to the Sun, Arcturus visibility occurs at low altitudes H < 400

where the value of atmospheric absorption begins to exert a stronger influ-
ence. In this case, we cannot assume that Arcturus and Vega are attenuated
by atmosphere equally. Taking into consideration the amendments we will de-
fine an atmospheric absorption ∆m for each experiment and substitute it into
the differentiated equation (4b): dh = −1.23 · dm. After calculating the cor-
rection ∆h we will adjust the value of ∆h2

V A(x): ∆h2
V A = hV ega−hArctur+∆h.

Fig. 5. Dependence of the function ∆h1

V A(x) when the distance between a star and the Sun
is greater than x > 600.

Example of calculation. In the evening on October 10, 2009 we recorded
the appearance of Vega at 18h55m Moscow time and 19h02m appearance of
Arcturus. The times of the beginning of stellar visibility correspond to the
solar depression hV = −2.40, hA = −3.40 and the altitude of Arcturus at
the time of observation was H ≈ 280. According to observation of Vega the
value of solar depression corresponds to the cleanest atmosphere, which is
implemented in Moscow. Therefore, we set k = 0.25. Then, the amount of
additional absorption will be ∆m = 0.25(F (62) − 1) = 0.28m, and the value
of correction will be ∆h = −1.23 ·0.38 = −0.340. Finally, taking into account
atmospheric absorption we’ll get ∆h2

V A = hV ega−hArctur+∆h = 0.660, which
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differs by one-third of the value without correction ∆h2
V A = hV ega−hArctur =

1.00.
Equating the regression equation ∆h1 and ∆h2 we’ll define ”the return

point” η, Fig. 7. The sense of ”the return point” lies in the fact that when
approaching the Sun more closely than η = 580 it is necessary to consider the
increase of the sky brightness. The increasing of the sky brightness can be
represented as an additional amendment h∗, which is added to the calculated
value of Sun’s depression limit hlim when the chosen star becomes visible:

h∗ = −0.0338 · (580 − x), when x < 580 (7)
h∗ = 0, when x ≥ 580

htheor = hlim + h∗ (8)

Fig. 6. Dependence of the function ∆h2

V A(x) when distance between a star and the Sun is
less than x < 600.

For constructing a model taking into account the sky background, we
used the observations of Arcturus and Vega, although as a comparison one
can be used any another star. However, similar functions, based on the obser-
vations of Arcturus and γ Cyg, as well as Arcturus and γ Aql have a greater
variance of observations, and as a consequence, great errors of the coefficients
of equations. This effect is due to the fact that during the observation the
transparency of the atmosphere can be changed by the appearance of fine
subtle clouds. To reduce the influence of atmospheric conditions the compar-
ison stars have to be selected so that all-stars appear and disappear at about
the same time.

The amendment (7) was obtained from observations a pair of stars with
roughly the same brightness. However, it does not mean that if we replace
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the star closest to the Sun (Arcturus) for a star with another magnitude, the
equation (7) will remain unchanged. Let’s verify this.

Example No.2. Verification of the model for other stars with another
magnitude for a known value of the extinction coefficient.

On January 11 and 12 2010 Altair mV = 0.77m was registered at the
altitude H = 240 and the distance from the Sun x = 310. According to
observations of Vega, the state of atmosphere was close to optimal since
h(V ega; 11.01) = −2.630, and h(V ega; 12.01) = −2.570. Therefore, we as-
sume that the value of extinction coefficient k = 0.25. Then, we calculate
a theoretical value htheor and compare it with the value that was obtained
from observations hobs.

At the altitude of H = 240 an additional atmospheric absorption is
∆m = k · (F (66) − 1) = 0.25 · (2.46 − 1) = 0.36m, then a limit solar
depression without increasing of the sky background is equal to hlim =
−2.47−1.23 ·(0.77+0.36) = −3.860. The sky background gives extra amend-
ment h∗ = −0.0338 · (58 − 31) = −0.910, then a theoretical value will be
htheor = hlim + h∗ = −4.780. The measured values hobs(Altair; 11.01) =
−4.750 and hobs(Altair; 12.01) = −5.030 are in the good agreement with the
theoretical estimate.

Example No.3. Verification of the model for other stars with another
magnitude for a known value of the extinction coefficient.

On January 11 and 12 2010 Tarazed (γ Aql) mV = 2.72m was registered
at the altitude H = 230 and the distance from the Sun equal to x = 320.
The correction for atmospheric absorption is ∆m = k · (F (67) − 1) = 0.25 ·
(2.56 − 1) = 0.39m, whence it follows that a limit solar depression is hlim =
−2.47 − 1.23 · (2.72 + 0.39) = −6.300, and extra amendment on increasing
of the sky background is equal h∗ = −0.0338 · (58 − 32) = −0.880. Then a
theoretical value is htheor = hlim + h∗ = −7.180. The measured values are
hobs(γ Aql; 11.01) = −6.700 and hobs(γ Aql; 12.01) = −6.970. In the first
case, the difference from the theoretical result is about 0.50. Since the time
of fixing the error is not less than 0.330, this result is also quite good.

Thus, according to the examples No.2 and No.3, the model that describes
the increase of sky brightness is independent on a stellar magnitude and it
can be successfully applied for stars with different brightness.

Consider the more general case where the extinction coefficient is un-
known or it has different values near the zenith and near the horizon. In this
case, we can use a pair of observations stars, which are located near horizon
close to each other.

Example No. 4. Verification of the model at the unknown value of the
extinction coefficient.

On June 28 2010 at 23h14m Moscow summer time Capella mV = 0.08m

was registered at the altitude H = 130 during the minimum distance from
the Sun x = 270. This moment corresponds to the depression of the Sun
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hobs(Capella; 28.06) = −5.670. From these data, we calculate the coefficient of
atmospheric absorption. The amendment is h∗ = −0.0338·(58−27) = −1.050

then hlim = h − h∗ = −4.620. From the equation (4b) hlim = −2.47 −
1.23 · (mV + ∆m) we express the absorption in the direction of the star
∆m = −(hlim + 2.47)/1.23 − mV = 1.67m. Next we find the coefficient of
extinction k = ∆m/F (77) = 0.38.

That evening, at 23h48m we watched the appearance of β Aur with ex-
traatmosperic magnitude mV = 1.90m when H = 120 and x = 220. According
to (6) the absorption in the direction of the star is ∆m = 0.38 · (F (78)−1)+
(0.38−0.25) = 1.58m, whence it appears hlim = −2.47−1.23 · (1.90+1.58) =
−6.750 and h∗ = −0.0338 · (58 − 28) = −1.220. Hence the theoretical value
of the solar depression is htheor = −7.970 when the measured value is hobs(β
Aur; 28.06) = −7.900.

According to the examples, the constructed model quite well describes
the appearance of stars in the twilight, taking into account the atmospheric
absorption and non-uniform brightness of the sky at the values x ≥ 220. How-
ever, the observations available to us are not enough to test the applicability
of the model at x ≤ 220. So we will extrapolate the equation (7) to the case
x ≤ 220 and check whether this extrapolation is valid.

Model of stellar visibility during twilight
1. As a result of observation we has been determined the dependence,

which connects the limit value of apparent magnitude with a solar depres-
sion below the horizon:

m(h) = −2.78 − 0.18 · h , where h ≤ −7.70 (3a)
h(m) = 15.62 − 6.61 · m , where m ≤ 4.2m (3b)
m(h) = −2.01 − 0.81 · h , where h > −7.70 (4a)
h(m) = −2.47 − 1.23 · m , where m > 4.2m (4b)

2. These relations allow to estimate the possibility of stellar visibility, for
the stars which are located at a distance from the Sun great than x > 580 and
the altitude H ≥ 400. When the altitude is less than H < 400 it is necessary
to introduce an amendment to the atmospheric absorption and re-calculate
the star’s magnitude.

m′ = m + k(F (z) − 1) + (k − 0.25) (6)

The recalculated value of stellar magnitude has to be substituted in equa-
tions (3b) or (4b) and as result we’ll get hlim.

3. When the distance between the star and the Sun is less than x < 580

it is necessary to consider the background of the sky. In this case to register
the star an additional value of solar depression below the horizon is necessary:
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h∗ = −0.0338 · (580 − x), when x < 580 (7)
h∗ = 0, when x ≥ 580

4. Theoretical value of solar depression is necessary to register the star is:

htheor = hlim + h∗ (8)

4 Verification of the model on other people’s observational
data.

To test the model using observational data of others, we used the arcs of
visibility, which values are defined as follows. Let’s assume that, in the ini-
tial moment t0 the Sun has set just below the horizon, and the star with
magnitude m and at distance from the Sun x is at an altitude H above the
horizon. Having measured some way the extinction coefficient k we can cal-
culate a value htheor and compare it with a value of solar depression h(t0).
Let’s assume htheor(t0) − h(t0) < 0.

Fig. 7. Determination of the return point η

Eventually, values htheor(t) and h(t) change, and as soon as the difference
becomes positive htheor(t0) − h(t0) > 0, the star begins to be visible in the
rays of sunset. At the beginning of stellar visibility t1, we define the quantity
Γ (t1) = H(t1)+h(t1). With further depression a star is being grown weakened
by the atmosphere and at time t2 the difference is again negative htheor(t2)−
h(t2) < 0. We assume, that the value Γ is an arc of visibility γ, γ = Γ (t1),
under the following condition:
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t2 − t1 ≤ 4min (9)

Let’s explain the meaning of this condition. Due to the condition (9), the
star appears in the twilight for a short time and then disappears. In the case
of a smaller deletion of the star from the Sun x, twilight appearance of the
star does not come, so we cannot determine the times t1 and t2. It means
the conditions of visibility are not yet due. As an example, we calculated the
arc of visibility of Venus and Mars, Fig. 8 and Fig. 9. On the horizontal axis
we postponed the altitude of the planets H(t), and the vertical axis value
htheor(t) − h(t), which is a formal criterion of stellar visibility.

Calculations show that the value of the arc of visibility can vary subject to
the brightness of the planet and the extinction coefficient. We are interested
in getting the most typical values of the arcs of visibility, so we have taken
the most typical of the planets magnitude just before conjunction with the
Sun and used the extinction coefficient, which corresponds to a fairly clean
air k = 0.20.

Fig. 8. The calculation of the arc of visibility of Venus. On the horizontal axis the altitude
H of the planet is postponed. The vertical axis corresponds to the difference between the
theoretical value htheor of solar depression below the horizon at which the planet can be
seen and the actual solar depression h.
Triangles facing down, shows the case when a planet is visible for a long time during twilight.
Triangles facing up, marked the case when the evening visibility has passed some time ago.
The circles marked case of an extremely visibility of the planet, for which we determine the
arc of visibility.

Facing down triangles in both figures marked the case when the planet is
visible in the twilight for quite a long time. It means that the planet can be
seen next evening at the same state of atmospheric condition. The duration
of visibility of the planet will decrease every day. Obviously, the case of an
extremely visibility of the planet does not realize, so it does not makes no
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sense to define the arc of visibility. Facing up triangles denote the case when
htheor(t)−h(t) < 0. It means that during the night visibility of the planet had
already passed and it disappeared behind the Sun. The heavy circles marked
the case of an extremely visibility of the planet, for which we determine the
arc of visibility.

Fig. 9. The calculation of the arc of visibility of Mars. Designations are similar.

In Fig. 8 and Fig. 9 a difference profiles of the functions htheor(t) − h(t)
of Venus and Mars is explained due to the fact that Venus remains brighter
4m at the same set of the data parameters of the problem. In this case, to
calculate the visibility conditions we use the equation (4b). Mars has less
magnitude; therefore its profile is calculated by the equations (4b) and (3b).

We compared the calculated values of the arcs of visibility of the bright
planets with the values of the arcs of the studies of Ptolemy and Schoch.
Ptolemy defined the arc of visibility on the basis of his own observations,
which he tried to carry out under optimal weather conditions. About his
own observations, Ptolemy told that summer observations in the vicinity of
Cancer are more preferable, because at this time the air is clean and clear,
and the slope of the zodiac is symmetric [in the east and west].

However, in the Almagest Ptolemy does not result observations them-
selves, therefore it is unknown how many observations for each planet he
used. Schoch data are based on the Babylonian observations of the planets,
which were held during different days of a year under different atmospheric
conditions. Note that the average extinction coefficient in Egypt (where
Ptolemy observed) is somewhat greater than in Mesopotamia. Therefore,
the Ptolemy’s arc of visibility must be greater than the Babylonian values.
In the model calculation we used a value of the extinction coefficient equal to
k = 0.20 , which corresponds to a transparent atmosphere. We accepted the
maximum value of extra-atmospheric brightness of the planets for the elon-
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gation at 10 degrees: Venus mV = −3.8m, Jupiter mV = −2.0m, Mercury
mV = −1.5m, Saturn mV = 0.7m and Mars mV = 1.2m. The comparison
results are shown in Table 1.

Planet Ptolmey Schoch Model

5.8 ÷ 5.8 u

Venus 5 5.2 ÷ 5.7 b 6

(15)

Jupiter 10 7.4 ÷ 9.3 8

(12)

11.1 ÷ 13.2 u

Mercury 10 9.5 ÷ 10.5 b 9

(30)

Saturn 11 10.5 ÷ 13 11

(9)

Mars 11.5 14.2 ÷ 15.5 12

(4)

Table 1. Comparison of the calculated values of the arcs of visibility with
data of Ptolemy and Schoch. For Schoch’s data, the total number of

observations is given in curves. For Mercury and Venus the arcs at the
moments of upper and lower conjunction of the planet are presented.

The simulation shows that the calculated arcs of visibility are in a good
agreement with the results of Ptolemy and Schoch in case if the error of half
a degree is ascribed for all quantities. Probably Ptolemy got too high value
for the arc of visibility for Jupiter. Value of the arc of visibility of Mars was
overrated due to the fact that Schoch used only four observations of this
planet. We can assume that in all cases the state of the atmosphere did not
allow to observe Mars at a lower value of the arc of visibility.

Besides, in this paper Schoch provides theoretical values of the arc of
visibility for the heliacal rising (the first morning visibility - mfirst) and
heliacal settings (the last night visibility - elast) of a stars. In Fig. 10 the
results of comparison of our calculations and Schoch’s data are given. Our
calculations are corresponding to the value of extinction coefficient k = 0.20.

According to Schoch, the arc of the mfirst γR exceeds the arc of elast γS

by 10. The difference between the arcs of visibility can be explained by the
fact that the planet’s position is known to the observer from the previous
evenings for heliacal setting. For heliacal rising the place and date of the
appearance of the star are unknown, which complicates the detection of a
star. On the other hand, during the morning observations the atmosphere is
more transparent, which allows to detect a star in more difficult conditions.
Both of these factors holding in opposite directions compensate each other.
The most likely explanation for the differences of the arcs of visibility is that
the first morning visibility occurs when an observer records the detection of a
star. Last evening visibility approaches at the first day when observer cannot
detect a star during twilight. It means that on the date of observation the
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star was not found, and it last visibility occurred on the previous day. The
difference of 1 day provides the difference of the arcs on 10 degree.

A theoretical calculation at value of the extinction coefficient k = 0.20
exactly coincides with Schoch’s results for heliacal risings of the stars. How-
ever, our model allows us to calculate the arc of visibility over a wider range
of magnitudes.

Fig. 10. The dependence of the arc of visibility of magnitude γ(m). Squares and triangles
denote the theoretical estimates of Schoch for the first morning (mfirst) and the last evening
(elast) visibility. Circles denotes theoretical calculation using our model.

Next, let’s check the model with the observational data of Schafer [1987].
To do this we used his observations from Table 1, in which the stars were
registered at the limit of visibility. (In the table corresponding observations
are marked with ” ≥ ”). We have calculated the arc of visibility on the date of
observation for Schaefer’s data, and compared it with the theoretical values,
which were defined by the model. The calculation results are presented in
Table 2.

Table 2 shows that in 7 out of 9 cases, theoretical values of the arcs of
visibility γtheor differ by no more than 20 from the values, which follow from
the observations γobs. In addition, the obvious equality is true γtheor ≤ γobs.
It means that it’s really more difficult to discover a star in the sky than to
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predict the moment of it’s appearance theoretically. In cases of No.4 and No.9
the difference between theoretical and experimental values is quite great,
but the previous analysis shows that the model does not give such large
errors. The most likely is that some observations are inaccurate. For example,
estimates ”the star is visible” (the ”>”) and ”star is visible with difficulty”
(the symbol ”≥”) are subjective and depend on the observer. Therefore, in
some cases errors are possible.

N Star Event mV ϕ k Date x γobs γtheor

1 θ Gem Rise 3.60 -30 0.25 20.08 47 22 21.5

2 α Leo Set 1.33 19.8 0.13 08.08 14 11 10.5

3 κ Sco Set 2.41 32 0.13 10.11 41 13.5 12

4 ρ Sgr Rise 3.93 32 0.15 13.02 35 25 20

5 ρ Sgr Rise 3.93 32 0.15 14.02 36 24 22

6 β Cap Rise 3.08 32 0.18 15.02 22 18.5 17

7 β Cap Rise 3.08 32 0.18 16.02 23 17.5 15.5

8 β Cap Rise 3.08 32 0.18 17.02 24 17.5 15.5

9 ι Psc Set 4.13 32 0.14 16.02 30 30 21

Table 2. Comparison of stellar arcs of visibility on the date of observation
due to Schaefer’s data with theoretical values which were defined by the

model. Table mV - extraatmospheric brightness of the star, ϕ - latitude of
observation, k - extinction coefficient, x - distance between the star and the

Sun.

This hypothesis is demonstrated by the fact that according to observation
No.4 Schaefer’s model gives the difference ∆pred−∆obs = −9d, and according

to observation No.9 it provides ∆pred−∆obs = 14d. Let’s note that according

to Schaefer’s results the maximum error ∆pred − ∆obs = 22d is achieved in
observation No.3, where we got a good correspondence of arcs of visibility.
In the rest 6 cases, Schafer’s model fits well to his observation data because
| ∆pred − ∆obs |≤ 3d. Thus, in most cases, our model describes the observa-
tions of Schaefer very well.

5 Taking into account stellar spectra.

In all previous calculations, we assumed that the atmosphere is equally re-
duces the shine of stars, regardless of their spectrum. However, Forbes effect
breaks this pattern. Forbes effect is that due to the bandwidth of the reaction
and dependence on the wavelength of absorption, an attenuation coefficient
depends on air mass. In other words, atmospheric absorption decreases sub-
ject to the decrease of the altitude (or the increase in atmospheric mass).

To estimate the magnitude of this effect we used the models of light at-
tenuation of the Earth’s atmosphere from A.I. Zakharov. The models were
constructed as follows. Atmosphere (from 0 m to 100 km) was divided into
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layers of varying thickness. He used 10 layers, 100 m thick, 8 - 125 m, 5 - 200
m, 8 - 250 m, 6 - to 333 m, 6 - 500 m, 30 - 1 mile, 10 - 2 km, 6 - at 3.333
miles, 4 - to 5 km. For each layer from three models pressure, temperature,
partial pressure of gases (H2O, O2, O3) and the average concentration of
aerosol was calculated. The models take into account the latitude and longi-
tude of point location and dependence of distributions of all parameters on
a season. Further, for the ray that connects the observer with a star, he cal-
culated the optical depths for Rayleigh scattering, for aerosol scattering and
for absorption of gases for each wavelength in steps of 50Å in the range of
3025 to 9975Å. To obtain total atmospheric attenuation, light absorption and
attenuation of light due to scattering were summed up in all layers. At the
boundary of layers the refraction of light depending on the refractive index
of air temperature, pressure and water vapor was calculated. Next, integra-
tion was made for the curve of the reaction of the eye and specific energy
distribution in the spectrum of stars.

According to the observed dependence of atmospheric attenuation on the
air mass a polynom was build. As a result, the author obtained three models
for the atmosphere of Alexandria (Egypt), where a total absorption ∆m is a
function of atmospheric mass Fz and color index B − V .

1. Model of ”clean” atmosphere. (Rayleigh atmosphere).

∆m = 0.1707FZ(1 − 0.0655(B − V ) + 0.00050FZ(B − V ) − 0.00040F 2

Z + 0.00000720F 3

Z)

2. Model of ”winter” aerosol.

∆m = 0.2616FZ(1 − 0.0454(B − V ) + 0.00030FZ(B − V ) − 0.00020F 2

Z + 0.00001236F 3

Z)

3. Model of ”average seasonal” aerosol.

∆m = 0.3397FZ(1 − 0.0360(B − V ) + 0.00008FZ(B − V ) − 0.00004F 2

Z + 0.00001098F 3

Z)

In the model of ”winter” aerosol the average concentration of aerosols during
the three winter months was used. In the model of ”average seasonal” (”av-
erage”) aerosol average concentrations of aerosols in the atmosphere during
season was used. Numerical factor in front of multiplier FZ is the extinction
coefficient corresponding to one air mass k = ∆m(FZ = 1). Since the realiza-
tion of the aerosol in the atmosphere can change, the extinction coefficients
kWin and kAve also vary around the average value. For the model of ”clean”
atmosphere it was assumed that the aerosol is completely absent and the
scattering occurs at Rayleigh law. Therefore, the value of kR is the minimum
possible extinction coefficient, which is never realized in practice. The min-
imum value of the extinction coefficient for the middle latitudes is k = 0.22
[Kulikovskiy, 2009]. Smaller values are possible in the mountains, where the
most dense atmosphere layers are excluded from integration.

The product k ·FZ determines the atmospheric absorption ∆m for a white
star of spectral class A0 similar to formula (6). An amendment of a stellar
color is provided by the second and third terms of expression in the brack-
ets which contain the factor B − V . The comparison of the models shows
that when coefficient extinction increases an influence of a spectrum on the
value of absorption decreases noticeably. For a white star spectral correc-
tion is equal to zero for any model, since the color index | B − V |≈ 0. In
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contrast, for red supergiants of spectral type M1.5Iab (Antares, Betelgeuse)
B−V = 1.85m we get a maximum value of the color correction. The last two
terms, which contain factors F 2

Z and F 3
Z , show the most significant effect on

the value of attenuation for a star in the vicinity of the horizon. However, in
most cases can be neglected. Let’s consider the influence of the effect of color
correction terms using concrete examples.

Example No.5. Influence of the spectral corrections on the heliacal vis-
ibility of the planets.

According to our calculations, Venus at mV = −3.8m and k = 0.20 has an
arc of visibility γ = 6.10 at the altitude H = 2.50. The color index of Venus
slightly depends on the phase angle and reaches a minimum value B − V ≈
0.7m in the upper and lower conjunctions [Irvine, 1968]. Then, taking in
account spectral characteristics, its magnitude will exceed a theoretical value
on dm ≈ 0.27m, which will reduce the arc of visibility up to γ′ = 5.70. Shortly
before conjunction with the Sun, Jupiter has a magnitude mV = −2.0m, and
its arc of visibility without correction is γ = 8.30. Assuming that color index
of the planet is B − V ≈ 0.85m [Irvine, 1968] we get the value of the arc of
visibility about γ = 7.80. For Mars, at mV = 1.2m and k = 0.20 the arc of
visibility is γ = 12.10. Assuming that the color index of Mars is B−V ≈ 1.3m

we obtain, the corrected value of the arc of visibility equal to γ = 11.40. For
Antares, at mV = 0.96m, k = 0.20 and B − V = 1.85m we have the greatest
difference γ = 11.80 and γ′ = 11.00. Finally, for a relatively faint red star at
mV = 3.5m, k = 0.20 and B − V = 1.85m we get the difference γ = 14.80

and γ = 14.40.

It follows from these estimates that for bright yellow stars with a value of
color index of about B − V = 0.60 ÷ 1.0m the consideration of atmospheric
effects leads to a decrease the arc of visibility at 0.5 degree. Thus, we can cal-
culate the arc of visibility of stars using a simple model (6) and then adjust it
with the amendments. More accurate calculations have no meaning by virtue
of errors in input data and the model itself. For the brightest red stars, which
has color index B−V > 1.0m, a value of correction is about 0.5÷0.7 degree.
With a decreas of magnitude the value of a correction also decreases. For the
objects with stellar magnitude of ∼ 4m a correction can be neglected even for
red stars. This is due to the fact that the faint objects begin to be noticeable
quite at high altitudes when the Forbes effect is small. Finally, let’s note that
in all these examples, we used the model, which is most strongly dependent
on the color index of stars. In practice, the presence of aerosols reduces the
dependence of value of atmospheric absorption on the spectral characteristics.

Conclusion. Theoretical estimates of the arc of visibility of the planets
and stars have shown a good agreement with the data of Ptolemy, Schoch
and with observations of Schaefer. This implies that the extrapolation of the
equation (7) is true for x < 200 and our model successfully describes the twi-
light visibility of stars. This model can be used to study the twilight visibility
of stars in the field of ancient astronomy.
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