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Abstract. Linearized and flattened light curves (29 in B band and 29 in V band) of the
recurent nova RS Oph, taken in 2008–2017 by 5 telescopes, are analyzed. The purposes
are (i) characterizing of the flickering phenomenon by various ways and (ii) justification of
the ”resonance” distribution of the modes of the flickering quasi-periods, found in Paper
I. The typical observing circumstances are: monitoring duration 60–150 min, number of
CCD frames 50–200 and time step 0.5-1.5 min.

Part 1 presents photometric diagrams, standard and range deviations of the light
curves in dependence on the average flux, as well as the distributions of the skewness and
kurtosis of the histograms of the light curves. The intra-night flickering contains local
disk obscures/shots and global disk instabilities. It seems both processes alternate their
superiority. The average skewness, 0.12±0.30, gives weak privilege to the local shots. The
average kurtosis, –0.17±0.62, gives some privilege to the global instabilities. In contrast
to the random process with bell-shaped distribution of the deviations, deficit of small
and large deviations is obvious in about 1/2 of the cases. Presence of light variations,
close to oscillations, give some priority to the global disk instabilities.

In Part 2 every light curve is scanned digitally by a system of data windows with
sizes Θ. Six fractal parameters are derived as average values for each Θ and regarded as
functions on Θ in log-log coordinates. The average structure gradient, 0.48±0.16, also
does not point out the prior process of the light variations. The mean value of the fractal
dimension, 1.48 ± 0.06, too. The asymmetry function, introduced in this work, shows
that the mean duration of the elementary shots is 3.6±0.8 min. It seems the relatively
weak and short local shots dominate at time scales of a few minutes.

Part 3 presents 97 quasi-periods and their distributions. The quasi-periods are de-
tected by the local minima of the structure functions as 58 primary, 20 secondary, 10
tertiary and 13 very short. All quasi-periods are confirmed by the local maxima of the
relevant auto-correlation function. The distribution of the quasi-periods shows 6 modes,
at 8, 13, 21, 30, 48 and 73 min. The modes of the quasi-period P follow exponential
(or power) function on the number of the mode M with standard deviation of 4.7%.
The power dependence is PM = 3.48 × 1.55M . This function predicts modes also at 3.5,
5.3 and 115 min, which are not detected in this work. However, the characteristic du-
ration of the elementary shot, 3.6±0.8 min, corresponds well to the predicted mode at
3.5 min. Because 1.55 ≈ 3/2, the modes of the quasi-periods like obey 3/2 resonance
with unknown reason. The relative energy of the quasi-period (i.e. of the quasi-periodic
structure, including the energy of its substructures) correlates with the logarithm of the
quasi-period under a slope coefficients 0.02.

Generally, the flickering light curves are too complicated and various, without a pos-
sible classification (at least in the present work). Unique systematic is only the resonance-
like sequence of the quasi-period modes.
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Introduction

RS Oph is a symbiotic recurrent nova that contains an M2 III mass donor
(Shenavrin, Taranova & Nadzhip 2011) and a massive carbon-oxygen white
dwarf (Mikolajewska & Shara 2017). The orbit of the system is circular
(Fekel et al. 2000) with period 453.6±0.4 d (Brandi et al. 2009). RS Oph
exhibits recurrent nova outbursts approximately every 20 years (Evans et
al. 2008) with most recent nova outburst that occurred on 2006 February 12
(Narumi et al. 2006). Wynn (2008) proposed that both Roche lobe overflow
and stellar wind capture are possible accretion scenarios in the case of
RS Oph.

The flickering (brightness variability on time scales from minutes to
hours) of RS Oph has been first detected by Walker (1977). The peak-to-
peak amplitudes of these variations reach 0.3–0.5 mag. Kundra, Hric &
Gális (2010) carried out wavelet analysis of two time series of RS Oph.
They unveiled two different modes of flickering, with frequency 50–100 c/d
(cycles of variations per day) and < 50 c/d. The respective quasi-periods
are 30–15 min and > 30 min. The amplitudes of the flickering modes are
estimated to be about 0.1 mag and about 0.6 mag, respectively.

Later, Kundra & Hric (2014) revealed two flickering modes with fre-
quency 60 c/d and 140 c/d, i.e. with quasi-periods 24 min and 10 min.
The amplitudes are 0.6 mag and 0.1 mag, respectively. The flickering phe-
nomenon is explained (roughly yet) by variable mass transfer from the red
giant through the accretion disk to the surface of the white dwarf. The
reasons of the appearance of two modes of flickering are not clear.

Recently, Zamanov et al. (2018) estimated the average values and am-
plitudes of the magnitude, color, temperature and radius of the flickering
source. They found that while RS Oph becomes more blue as it becomes
more bright, but the blue component becomes more red as it becomes more
bright (assuming that the red component is not variable). Zamanov et al.
(2018) found also a correlation with coefficient 0.81 between the B band
magnitude and the radius of the flickering source. They did not find corre-
lation between the temperature and the brightness of the flickering source.

More information, especially about the influence of the brightness state
on the observing particularities of the flickering is necessary. The flickering
parameters vary from night to night and the study of the physics of the
flickering requires revealing of time details of the variability. Such details
ought to be characterized by their typical time scales, amplitudes, standard
deviations, morphologies, etc. The data about the flickering source are of
main interest.

Information from the apparent chaos of the flickering may be extracted
in different ways, as well as by a system of statistical methods, considered
today as fractal analysis. The fractal approach is preferable because (i)
being conceptually simple, it extracts from the apparent chaos numerous
useful parameters, (ii) it is weakly sensitive to non-equality of the data
sampling and (iii) in contrast to the Fourier techniques it is applicable at
low signal-to-noise ratio.

Similar approach has been applied by Bachev et al. (2011) and Georgiev
et al. (2012) for studying of the flickering of the cataclysmic variable star
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KR Aur. The main result is that the flickering contains at least two different
sources of variability.

In Paper I (Georgiev et al. 2019) we explored magnitude scales. We
found quasi-periodic structures with sizes 10–120 min in all flickering series.
We unveiled four modes of quasi-periods, at about 10, 21, 36 and 74 min.
The quasi-period of about 21 min is the most widespread. Also, we found
a faint correlation between the quasi-period and its cumulative flickering
energy, estimated by the plateau level of the relevant deviation function.

In the present paper we explore linear flux scales. We concentrate (i)
on revealing parameters and functions for quantitative characterizing of
flickering light curves (Fig. 5) and (ii) on re-revealing the modes of the
quasi-periods with sizes 15–80 min by more exact criteria (Fig. 12). The
light fluctuations of the RS Oph are too various and therefore we compare
them with the known fluctuations of the sunspot index of Wolf for 6 cycles
and the number of the visits in the Smolyan planetarium for 6 years (Fig. 7),
as well as with uniform and normal random processes.

Numerical results of the processing are presented in 5 tables, in Ap-
pendix A. Fifty-eight panels with graphs, similar to these in Fig. 5, are
collected in Appendix B as Supplement Gallery, cited hereafter ”Gallery”.
Appendix B is available only in the electronic version of Bulgarian Astro-
nomical Journal.

Contents of the text follows:

1. General view on the monitoring light curves (MLCs)
1.1. Photometric diagrams of the flickering source
1.2. Linearized, flatten and relative MLCs
1.3. Relations ”average flux–flux deviation” of the flattened MLCs
1.4. Histogram parameters of the relative MLCs

2. Fractal view on the MLCs
2.1. Fractal indicators, parameters and functions
2.2. Deviation function and its plateau
2.3. Structure function and structure gradient
2.4. Range function, Hurst function, Hurst gradient and fractal dimension
2.5. Asymmetry functions and the shortest shots in the MLC

3. Distributions of the quasi periods
3.1 Structure function, quasi periods and auto-correlation function
3.2. Modes in the distribution of the quasi-periods
3.3. Quasi-periods and their flickering energy

4. Conclusions
References
Appendix A: Tables
Appendix B: Supplement Gallery

In this paper some abbreviations are used, as follows:
AF - asymmetry (ratio) function (Sect. 2.5);
A′F - skewness (asymmetry) function (Sect. 2.5);
BT - breakdown time-point (Sect. 2.5);
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CC - correlation coefficient;
DF - (standard) deviation function (Sect. 2.2);
FS - flickering source (Introduction);
FD - fractal dimension (Sect. 2.4);
HF - Hurst function (rescaled range function, Sect. 2.4);
HG - Hurst gradient (Sect. 2.4);
MLC - Monitoring light curve (Introduction);
RD - range deviation (half of the peak-to-peak amplitude, Sect. 1.3);
RF - range (deviation) function (Sect. 2.3);
SD - standard deviation of histogram or regression;
SE - standard error of estimated value;
SF - structure (deviation) function (Sect. 2.3);
SG - structure gradient (Sect. 2.3);
QP - quasi-period (Sect. 2.3, 3.1).

1. General view on the monitoring light curves (MLCs)

We analyzed 29 pairs of quasi-simultaneous MLCs of RS Oph system, in B
and V bands. These are the observations analyzed in Zamanov et al. (2018)
to which MLCs #29B and #29V (20090614) are added. The observations
were carried out by CCDs with the 2 m RCC, the 60 cm Cassegrain and the
50/70 cm Schmidt telescopes of the Rozhen NAO, the 60 cm Cassegrain
telescope of the Belogradchik AO, as well as the 41 cm telescope of the Uni-
versity of Jaén, Spain, in 2008–2017. The observing material is presented
in Zamanov et al. (2018; Table 1) and Georgiev et al. (2018; Paper I; Ta-
ble 1), as well as in Table 1 and Table 2 in the present paper. The results
are collected here in Tables. 3, 4 and 5.

The duration of a single monitoring run is TM = 28–223 min, typically
60–150 min. The number of the data points n (CCD frames in a single run)
32–470, typically 50–200. The time steps of the MLC, τM = TM/NM, are
0.24–3.48 min, typically 0.5–1.5 min. The standard error of our photometry
is 0.005–0.010 mag.

1.1. Photometric diagrams of the flickering source

In this work, magnitude data about the flickering source (FS) are derived
after removal of the contribution of the red giant and account of the inter-
stellar reddening. According to Zamanov et al. (2018) the apparent magni-
tudes of the red giant, considered to be constants, are mB = 14.66 mag and
mV = 12.26 mag, with standard errors (SEs) 0.05 mag. The color excess
toward RS Oph is estimated to be E(B−V ) = 0.69 with SE 0.09 mag. The
magnitude corrections A(B) = 4.19×E(B−V ) and A(V ) = 3.16×E(B−V )
are applied.

The average magnitude and color index of each original MLC are given
in Paper I. The average magnitudes of MLCs of the FS (after ”removal” of
the red giant and de-reddening) are given in Tables 3 and 4. The general
average magnitudes and colors of all 29 pairs of MLCs are: B = 9.36± 0.40
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mag (from 8.58 to 10.15 mag), V = 9.35 ± 0.53 mag (from 8.39 to 10.36
mag) and (B − V ) = 0.01± 0.17 mag (from –0.35 to 0.29 mag).

The first preliminary task is the visualization of the main photometric
particularities of the FS. Zamanov et al. (2018, Fig. 4, Fig. 5) already show
color-magnitude diagrams (CMDs), observed and calculated for the FS,
based on B magnitude. Here we add the time behavior of the magnitude
and color, as well as CMD, based on V magnitude.

Figure 1(a,b) presents the photometric behavior of the FS in the ob-
serving period. The V magnitude and (B − V ) color vary in the frames
of ≈ 2 mag and ≈ 0.5 mag, respectively. Well pronounced minimum of
the brightness and color is seen in the middle of the observing period, in
2013–2014. In agreement with Zamanov et al. (2018), when the average
brightness is lower, then the average color is more blue. This circumstance
is clearly revealed here in Fig. 1(c).

Fig. 1. (a,b): Behavior of the average V magnitude and (B − V ) color of the FS (dots)
in 2008–2017. (c): CMD of the FS with ordinary and reverse regressions (dashed lines)
plus their bisektrise (solid line). The MLCs which contain 2 or 3 quasi-periods (Sect. 3.2)
are marked by crosses or asterisks, respectively. Typical individual error bars are shown
in the right bottom corners of the diagrams. Hereafter ”G”, ”SD” and ”CC” are the
gradient, standard deviation of regression and correlation coefficient, respectively .

Figure 1(c) presents CMD of the average magnitude V and average
color (B − V ) of the MLC for the FS. The ordinary and reverse regres-
sions are drown to visualize how much the dependence between both mag-
nitudes and colors is narrow. The color gradient (here – the slope coef-
ficient of the bisektrise between the ordinary and reverse regression) is
G(B − V ) = ∆(B − V )/∆V = −0.32. The respective standard deviation
(SD) is 0.10 and the correlation coefficient (CC) is –0.84. These parameters
for the CMD with B instead V are –0.44, 0.14 and –0.69, i.e. the CMD based
on V magnitudes is clearly narrower. We note also the remarkable close cor-
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relation between V and B magnitudes with CC = 0.87, G(B) = 0.76 and
SD(B) = 0.02.

In Fig. 1 the crosses mark MLCs in which 2 different quasi-periods are
revealed (10 in B and 10 in V band). The asterisks mark the MLCs with 3
different quasi-periods (3 in B and 3 in V band, Sect. 3.2). More then one
quasi-period seems to be present somewhat in more bright and more red
MLCs.

1.2. Linearized, flatten and relative MLCs

The original MLCs of the FS, derived in B and V magnitude after re-
moval of the red giant and de-reddening (Sect. 1.1), are linearized (trans-
formed from magnitude scale to linear scale of flux) by the constants of
Bessel (1979). For a zero-magnitude star these constants are 6.317 × 10−9

erg cm−2 s−1 Å−1 for B band and 3.619×10−9 erg cm−2 s−1 Å−1 for V band.
In this work the results are expressed in units of 10−14 erg cm−2 s−1 Å−1.
The linearized MLCs F (t) (b(t) or v(t)) are shown in Figs. 5(a), 6(a) and
top panels in the Gallery.

Linearizing only is not sufficient. The empiric functions for character-
izing the MLC (Part 2) require flat MLCs, i.e. MLCs that fluctuate about
a global constant. However, most of the original MLCs are significantly
biased or they look like parts of flux variations with time scales of a few
hours. The flattening of the linearized MLCs is unavoidable. In Paper I
linear flattening (unbiasing) of the MLCs is applied in magnitude scales.
The substantiate is the magnitude variations are small. In this paper, in the
linear scale, the contrast of the MLC variations is increased and polynomial
removal of the large scale trend is necessary.

For the flattening the linearized (in fluxes) MLC F (t) is fitted by a

polynomial of m-th degree, f (m)(t), and the polynomial is extracted from

the MLC: ∆F (t) = F (t) − f (m)(t). Then the flattened residual MLC
∆b(t) or ∆v(t) is:

∆b(t) = b(t)− f
(m)
b (t) or ∆v(t) = v(t) − f (m)

v (t). (1)

In comparison with the linearized MLCs, the range and the standard devi-
ation of the flattened residual MLC are decreased by average of 1.7 ± 0.8
times (up to 5.7 times). The flattened MLCs are not shown especially, but
they are used in the dependences between the average flux and the standard
deviation, or range deviation, of the MLC in Fig. 2(a,b).

We explore mainly MLCs which consist of relative deviations from the
polynomial fit, δF (t) = ∆F (t)/f (m)(t), expressed in percents, i.e. relative
residual MLC δb(t) or δv(t):

δb(t) = ∆b(t)/f
(m)
b (t) or δv(t) = ∆v(t)/f (m)

v (t). (2)

These relative MLCs are shown in Figs. 5(b), 6(b) and in the Gallery,
just below the top panels. The relative MLCs are easily compatible – di-
rectly and by their histograms (Figs. 5(c), 6(c), Gallery).
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Suitable (low) polynomial degree is chosen for every MLC. The aims are:
(i) describing the large scale trend of the MLC and (ii) agreement between
the quasi-period estimations from the structure function and autocorrela-
tion function (Sect. 3.2). The polynomial degrees and the numbers of their
applications in this work are presented by the next pairs of numbers: 0-1, 1-
4, 2-4, 3-35, 4-2, 5-9, 7-3. Example of the influence of the polynomial degrees
1, 3, 5 or 7 on the results in this study are given in Fig. 6. Generally, the
results depend somewhat on the applied polynomial degree. However, such
suppressing or removing of long time flux variations offsets the structures
with time sizes 15–80 min and especially below 60 min.

We ought to note also that a small difference between the magnitudes
∆m and the relative flux difference of the type δF = ∆F/F obey the Pog-
son’s formulas4 (Zombeck 1990):

∆m = 2.5× lg(δF + 1) or δF = dex(0.4 ×∆m)− 1. (3)

for ∆m ≥ 0 and δF ≥ 0. Then the number of the hundreds of the mag-
nitude difference (cmag) coincide well with the numbers of the percents of
the relative flux difference, in percents in the interval 1–25 cmag or 1–25
percents.

Further, putting 1 in Eqs. 3 instead 2.5 and 1 instead 0.4 we derive the
known formulas for transforming of relative difference in linear scale δF
into difference in logarithmic scale ∆ lgF or vice versa: ∆ lgF = lg(δF +1)
or δF = dex(∆ lgF )− 1. Other such formulas, used in this paper (Figs. 11
and 12), are ∆lnF = (δF + 1) and δF = exp(∆ lnF )− 1.

1.3. Relations ”average flux – flux deviation” of the flatten
MLCs

The standard deviation (SD) and the range deviation (RD, the half of the
peak-to-peak amplitude) of the flattened MLC are ”energetic” characteris-
tics of the flickering. They are directly available from the flattened residual
MLC (Eqs. 1). These parameters correlate with the flux state of RS Oph
(Zamanov et al. 2015, 2018). Therefore, the second preliminary task ought
to be a revisiting of these correlations for the FS in magnitude and linear
scales.

Figure 2(a) juxtaposes in magnitude scales the average magnitudes and
the RD or SD of the MLCs. The RD and SD data take larger areas in
V band. The ∆V data anti-correlate weakly with the average magnitudes,
with CC = −0.34 for RD and CC = −0.45 for SD. The respective V
gradients are GRD = 0.013 ± 0.027 and GSD = 0.025 ± 0.070. Both V
gradients overcome the 95% Student’s criterion of significance, while B
gradients are practically zero.

So, at least in V band, the energy of the flickering is relatively larger in
low state of the FS. Such conclusions about the flickering of the cataclysmic
binary KR Aur in all bands has been pointed out by Bachev (2011) and

4 In accordance with the International Organization for Standardization (ISO31-11) the
notation lgX instead log10X or logX is fully admissible. (Taylor, B.N., 1995, Guide for
the Use of the International System of Units (SI), US Department of Commerce.
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Fig. 2. Correlations between the range deviation (top) and the standard deviations (bot-
tom) with the the average value of the MLC. (a): in magnitude scale; (b): in linear
scale. Dots and circles present B and V data, respectively. The lines are the ordinary
regressions; In (b) – together for B and V data, regressions without intercepts.

Georgiev et al. (2012). However, the difference between the high and low
states for KR Aur is about 6 mag, while here it is 2 mag.

Figure 2(b) shows in the linear scale the approximate proportionality of
the RD and SD to the MLC average, both for B and V data. The gradients
areGRD = 0.114±0.031 andGSD = 0.047±0.020 with respective correlation
coefficients 0.83 and 0.86. The ratio GRD/GSD = 2.4 is somewhat small
and corresponds to the visual impression about some deficiency of strong
deviations in the MLCs. In a simulated normal random process this ratio
increases to 3 with the number of the simulated data is barely 100.

Figures 2(a) give evidences that the typical relative energy of the flick-
ering in B band is 5% for SD and 11% for RD. In V band, in the frames
of 2 mag increasing of the abscissa, the energy of the flickering decreases
from 8% to 5% for SD and from 18% to 11% for RD. For comparison, the
fluctuations of the sunspot index and the planetarium visits are essentially
higher – about 90% and 75% for SD, respectively and about 200% for RD
(Fig. 7(d)).

1.4. Histogram parameters of the relative MLCs

The third preliminary task ought to be general characterizing of the relative
MLCs (Eqs. 2) by means of their histograms, shown in sub-figure (c) in
Figs. 5–7, and in the Gallery. The histograms reflect a big variety of the
MLC shapes.

The shape of any finite distribution Fi, i = 1, 2, ..., n may be char-
acterized by its standard deviation, SD, skewness (asymmetry) A′ and
kurtosis (excess) E′. The relevant formulas are based on the 2-nd, 3-rd
and 4-th central moments of the distribution, m2, m3 and m4, respec-
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Fig. 3. (a,b): Distributions of the skewness A′ (Eqs. 5) and the kurtosis E′ (Eqs. 6) of the
histograms of 58 relative MLCs (Eqs. 2). Dashed and short-dashed curves correspond to
B and V MLCs, while the solid curves show the common distributions. (All histograms in
this paper are slightly smoothed by convolution kernel [0.25, 0.50, 0.25]; (c): Juxtaposition
of A′ and E

′. Dashed lines present the ordinary and reverce regressions while the solid
line is their bisektrise.The asterisks show the data about the sunspot index (1) (Fig. 7,
left panes), visits in the Smolyan planetarium (2) (Fig. 7, right panels), uniform random
process (3) and normal random process (4).

tively. By definition mk = [Σ(Fi −Fm)]
k/n, where Fm is the average value,

Fm = [ΣFi]/n =< Fi > and n is the number of data points.
The definition of the standard deviation for large sample of data and

the formula for application on not large sample of data are:

SD(def) = m
1/2
2 and SD = [m2 × n/(n− 1)]1/2. (4)

The standard deviation s is regarded in dependence on MLC average in
Sect. 1.3.

The definition of the skewness and the formula for sample application
are:

A′(def) = m3/m
3/2
2 and A′ = [n(n− 1)]1/2/(n − 2)×A′(def). (5)

The definition of the kurtosis and the formula for sample application are:

E′(def) = m4/m
2
2 − 3 and E′ = Q1 × E′(def)− 3×Q2. (6)

HereQ1 = n2(n+1)/[(n−1)(n−2)(n−3)] and Q2 = (n−1)2/[(n−2)(n−3)]).
The formulas for sample applications are derived by Joanes & Gill (1998).

The normal random distribution is characterized by A′ = 0 and E′ = 0.
Positive skewness, A′ > 0, corresponds to distribution with heavy right
wind (tail) and vice versa. Positive kurtosis, E′ > 0, corresponds to distri-
bution whose peak is more sharp than the peak of the normal distribution
and vise versa. The uniform random distribution with scatter interval 1 has
A′ = 0 and E′ = 1.
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In Fig. 3(a) the skewness A′ of the MLC (Eqs. 2) shows unimodal dis-
tribution, from –0.6 to 0.8, with peak about A′ = 0.1. This distribution
confirms again the visual impression that MLCs with large single deviations
are very rare. Only one strong shot is clearly visible in MLC #17V. The
slightly positive mode gives weak privilege of the positive deviations due
to local disk shots. For comparison, the sunspot index and the planetarium
visits, dominated obviously by positive shots, demonstrate high positive
skewness (Fig. 7(c)). In the MLCs, in time scales < 15 min the steep flux
changes are well visible in the MLCs. They are detected objectively by the
suitable asymmetry indicator, introduced in this work (Sect. 2.5).

In Fig. 3(b) the kurtosis E′ of the MLCs (Eqs. 2) is distributed more
widely, from –1.2 to 1.4, with a peak about –0.2. Some right B appendage
is seen in B band. The negative mode of E′ confirms the visual impression
that numerous histograms (about 1/2 of all) pose flat tops, like a histogram
of a uniform random process. The reason is deficiency of small (close to the
mean) flux variations. Then the fluctuations seem rather oscillations than
normally distributed deviations.

A deficit of small flux variations is clearly visible when the polynomial
fit passes well in the middle of the deviations of the linearized MLC, as in
Fig. 5, top panels. Otherwise, about 1/4 of the histograms possess peaked
tops (positive kurtosis) and significant skewness (positive or negative). The
reason is that a part of the polynomial does not pass in the middle of
the deviations and by this way it changes artificially the distribution of
the deviations (Fig. 6(c), case m = 3). Figures 6(c) show how much the
histogram shape changes when the polynomial degrees increase, tending in
this case to histogram with positive kurtosis.

Generally, the negative mode of the distribution of the kurtosis (Fig. 3(b)
gives evidence of certain preferences of the flux oscillations to the flux devi-
ations, i.e. of some domination of the global disk instabilities over the local
disk shots. However, it seems that both processes alternate their superiority.

Figure 3(c) shows the mutual distribution of the skewness A′ and the
kurtosis E′. The correlation coefficient, CC = 0.43, is low and the gradient
of the bisektrise regression, G = 1.74, is poorly defined. In our opinion this
correlation is due occasionally to the cases when the polynomial fit does not
pass well in the middle of the linearized MLC. For a comparison, note that
the histograms of the sunspots index and the planetarium visits (”1” and
”2” in the diagram), pose clear positive skewness and kurtosis (Fig.7(c)).

So, in spite of the lack of clear systematics and dependences about the
flux variations in the MLCs, two particularities of these variations could
be noted, in contrast to the distributions of the normal randoms, sunspot
index and planetarium visits: (i) a general deficiency of single large positive
and negative deviations and (ii) a particular deficiency of small deviations.
By these particularities some histograms of MLCs look like histograms of
oscillations, similar to a uniform random process. Usually such histogram
has flat or trident top with size about 2×SD (Figs. 5(c), 6(c), Gallery).
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2. Fractal view on the MLCs

The aim of the data processing in this work is revealing and characterizing
of specific particularities of the apparent chaos in the MLC. Special at-
tention is devoted to the repeating time structures and their quasi-periods
(QPs). Following the recommendations of Mandelbrot (1982), Russ (1994),
Hastings & Sugihara (1995) and Falkoner (1997) we explore empiric fractal
indicators, parameters and functions. The current results are shown in the
relevant diagrams, collected in Figs. 5–7 and in the Gallery. Note that in
Fig. 5 the MLCs in B and V band are obviously different because they are
taken consecutively by one telescope.

Fig. 4. (a): The window with size Θj on its k-th position in the MLC (dots, connected
with segments), within the time bounds tX1 and tX2. The respective 4 fractal indicators
are are described in the text. (b,c): Typical shapes of 5 fractal functions over lg Θ,
described in Sect. 2.2–2.5: Range function (RF, dashed curve) in (b), density function
(DF, short-dashed curve) in (b), structure function (SF, solid curve) in (b), Hurst function
(HF, short dashed curve, in (c)) and asymmetry function (AF, solid curve, in (c)). The
gradients of the quasi-linear parts of the SF and HF, SG and HG, are noted as G(SF)
and G(HF). P(1) is the quasi-period corresponding to the local minimum of the SF. D(1)
is the density level of the DF, corresponding to P(1). ΘB is the time breakpoint of the
AF. (d): Often happening configurations of 5 or 4 adjacent points in the minute time
scale, whose relative fluxes cause high values of the AF (Sec. 2.5), giving evidence that
the MLC contains elementary shots.

2.1. Fractal indicators, parameters and functions

This study of a discrete MLC F (tn), n = 1, 2, , N , is based on a system of
scanning data windows with time sizes Θj , j = 1, 2, , J . The window sizes
are distributed uniformly by lg Θ. Each j-th window scans the MLC (with
1/2 overlapping), taking k = 1, 2, ,K different positions. The k-th position
of the j-th window is shown in Fig. 4(a).

Every window position is used for calculation of fractal indicators. Every
indicator is averaged over all K positions of the j-th window to give relevant
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fractal parameter. The dependence of every parameter on the window size
in log-log coordinates is considered as fractal function (Sect. 2.2–2.5).

The number of the specified window sizes is adopted to be J=99. In
the scanning every wide window is used if it is applied on the MLC at
least 3 times, and every narrow window is used if it contains at least 3
adjacent MLC points. Thus, we derive fractal functions with high resolution
in which every point is based on many windows positions, from 3 to ≈120.
The processing is organized in a few C-codes.

Figure 4(a) illustrates the definitions of 4 local fractal indicators:
(standard) deviation indicator djk, structure indicator sjk, range indica-
tor rjk, and asymmetry indicator ajk. Further, the average value of every
indicator over all K positions of the j-th window is derived as global frac-
tal parameter: deviation parameter Dj, structure parameter Sj , range
parameter Rj and asymmetry parameter Aj.

The deviation indicator djk and the deviation parameter Dj are:

djk = FSD, and Dj =< djk >j . (7)

Here FSD is the standard deviation of the data in the current position of
the window. And the broken brackets express average over all K positions
of the j-th window. In Fig. 4(a) the average value FAV and the rectangle,
bounded by the levels FAV±FSD in the window, are presented by horizontal
dashed segments.

The structure indicator sjk and the structure parameter Sj are:

sjk = |FX1 − FX2|/2, and Sj =< sjk >j . (8)

In Fig. 4(a) FX1 and FX2 are the levels of the crossing points between the
window bounds and the segments, connecting 2 neighbor points of MLC in
the window edges.

The range indicator rjk and the range parameter Rj are:

rjk = (FMax − FMin)/2, and Rj =< rjk >j . (9)

In Fig. 4(a) FMax and FMin are the levels of the largest positive and negative
peaks of the MLC in the window.

The dimensionless asymmetry indicator ajk and the asymmetry param-
eter Aj , introduced in the this paper, are:

ajk = (FMax − FMed)/(FMed − FMin), and Aj =< ajk >j . (10)

Here FMed is the median of the data in the window. In Fig. 4(a) the level of
FMed is presented by solid horizontal segment below the level of FAV. The
value of the asymmetry parameters Aj > 1 (and log Aj > 0) and Aj < 1
(and lg Aj < 0) indicate positive or negative asymmetry, respectively.

The dependence of the parameters Dj , Sj, Rj and Aj , as well as Hj =
Rj/Dj (Sect. 2.4) on the size of the scanning window Θj in log–log coor-
dinates are considered as fractal functions. The skewness parameter A′

j

(Eqs. 5) is used for comparison with Aj too. These functions are pre-
sented In Figs. 5–7 and in the Gallery, together in sub-figures (d,e), like
in Fig. 4(b,c).
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Fig. 5. Analysis of the MLCs #01B (left panels) and #01V (right panels). (a): Linearized
MLC (b(t) or v(t)) (Eqs. 1), with average level (dashed line) and fitting polynomial (solid
curve), number of data n and polynomial degree m; (b): Relative residual MLC (Eqs. 2),
in percents, with the zero level and ± SD levels (dashed lines), with the average time step
of the MLC τM ; (c): Histogram of the relative residual MLC (b) with its skewness A′ and
kurtosis E

′ (Sect. 1.4). The average, median and ±SD are shown by vertical segments;
(d,e): Fractal functions RF, DF, SF, AF, HF and A′F (Sect. 2.2–2.5). The right ordinate
of (d) is marked out in percents. The thick segments and their labels show the quasi-
linear parts of the SF and HF and their gradients. Solid and dashed vertical segments,
labeled above, mark primary and secondary quasi-periods, quasi-periods, indicated by the
minimums of the SF (Sect. 3.1). An additional short quasi-period of 13.2 min, found only
in the V MLC, is marked by short-dashed vertical segment. The thick vertical segment in
(e), labeled above, marks the breakdown point of the AF (Sect. 2.5); (f): Auto-correlation
function (ACF) of the residual MLC (Eqs. 2). The most left vertical segment marks the
auto-correlation time τACF. Other vertical segments mark the quasi-periods detected by
the SF and confirmed by the ACF.

We process the dimensionless relative residual MLCs (Eqs. 2). This
approach ensures compatibility of the results, as well as compatibility with
other kinds of time series (Fig. 7). Otherwise, if flattened residual MLC
(Eqs. 1) is processed, the indicators d, s and r (Eqs. 7–9) must be divided
additionally by the average flux in the window FAV. Then dimensionless
indicators will be usable again.

2.2. Deviation function and its plateau

The deviation function (DF), lgD = f(lgΘ), describes the increasing of
the deviation parameter D (Eqs. 7) with the increasing of the window size
Θ. In this paper the DFs are presented by short-dashed curves (Figs. 4(b),
5(d)–7(d), Gallery). The DF is used (i) for rescaling of the range func-
tion (Sect. 2.4) and (ii) for estimation of the relative energy of the QP
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Fig. 6. Effects of the polynomial degree m of the fit on the results from MLC #17V
with number of points n = 142 and time step of the MLC τM = 0.4 min. The polynomial
degrees m are 1, 3, 5 and 7. The standard deviations are 3.5, 3.4, 3.0 and 2.5, respectively.
The histogram changes significantly. The structure gradient stays almost unchanged. The
Hurst gradient increases weakly. The auto-correlation time decreases 3.4 times and the
quasi-periods, detected by the structure function and the ACF, tend to coincide. The
polynomial fit of 7-th degree is adopted as optimal. See Fig. 5 for details.

flux variations and the correlation between the QP value and this energy
(Sect. 3.3).

The DF of the MLC poses a simple universal behavior. While Θ is small
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and increases, DF incorporates larger MLC structures, i.e. larger variations.
When the window, growing up, begins to include a QP structure, the quan-
tity of new larger deviations decreases and the DF tends to a plateau. The
plateau level of the DF characterizes the energy of the variations, associ-
ated with the main (dominating) QP structure, together with the energy
of its substructures.

The DFs of the sunspot index and planetarium visits follow the same
behavior. However, while the heights of the MLCs plateau levels are about
5%, the heights of the plateau levels of the sunspot index and planetarium
visits are about 90% and 75% (Fig. 7(d)).

In Fig. 4(b) the level D(1) corresponds to the QP P(1), found by the
position of the local minimum of the SF (Sect. 2.2, 3.2). In Figs. 5(d)–7(d)
and in the Gallery the quasi-periods are labeled just above their levels in
the DFs.

Fig. 7. Application of the used methodics on the behavior of the sunspot index W in the
last 6 cycles (left panels) and the number of the visits of the Smolyan planetarium N in
the last 6 years (right panel). (a,b): Original and flatten time series, like linearized and
flattened MLCs; (c): Histograms of the flatten time series; (d,e): Fractal functions; (f):
Aut-correlation fuction. See Fig.5 for comparison.

2.3. Structure function and structure gradient

The structure function (SF), lgS = f(lgΘ), describes the change of the
structure parameter S (Eqs. 8) with the increasing of the window size Θ.
In this paper the SFs are presented by solid curves (Figs. 4(b), 5(d)–7(d),
Gallery). The SF is used in two ways: (i) the gradient of the initial part
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of the SF is used to characterize the dominating process which drives the
variability – local shots or global disk instabilities and (ii) the local minima
of the SF are used as detectors of QPs.

While Θ is small and increases, the SF increases almost linearly. The
relevant slope coefficient, known as structure gradient (SG), is:

SG = ∆ lgSF (Θ)/∆ lgΘ (11)

The quasi-linear part of the SF is presented in Figs. 5(d)–7(d) and in the
Gallery by thick segment, labeled with the SG value.

The SG value depends on the feedback of the flux variability and it is an
important characteristic of the apparent chaos of the MLCs (Di Clemente et
al., 1996, Kawaguchi et al.,1998). A value SG > 0.5 indicates a variability,
driven mainly by shots (impulses). A value SG < 0.5 gives privilege to
global flux instabilities of the disk. The last mentioned case was suspected
for KR Aur (Bachev et al., 2010). Examples follow.

In Fig. 5(d), left panel, for the MLC #01B with average time step
τM = 2.1 min and poor defined initial part of the SF, we derive SG =
0.22. In contrast, in Fig. 5(d), right panel, for the MLC #01V, with τM =
0.62 min and well defined initial part of the SF, we derive SG = 0.68.
The SG depends significantly on the time resolution of the MLC. Figure 6
shows that the SG depends weakly on the polynomial degree, taking values
between 0.55 and 0.62.

A comparison with sunspot index and planetarium visits is again useful.
In Fig. 7, left panels, the well pronounced 10.7 yr large scale sunspot cycle
plus the faint short time variations, produce moderate SG value, SG = 0.55.
In Fig. 7, right panels, the badly pronounced 1 yr cycle of the planetarium
visits plus the dominating strong short time impulses, produce extremely
high SG, SG = 1.72. From this point of view the behavior of the flux
variation of RS Oph seems formally close to the behavior of the short scale
variation of the sunspot index.

Figure 8(a) shows the distributions of the SGs of 58 MLCs. They take a
range from 0.1 to 0.9, with a peak at 0.48 ± 0.16. This value is an evidence
that the flux variations in time scale from 15 to 60 min may be due to both
local obscures/shots and global instabilities with alternate superiority.

We note that due to the low time resolution in many MLCs, mainly in B
band, the SGs are poorly pronounced and they seem to be underestimated.
However, Fig. 9(a) does not show significant correlation between the time
step τM and SG of the MLC. According to Fig.9(b) the SG does not correlate
also with the auto-correlation time τACF. Therefore, in our cases the SG
seems to be robust, but hardly derived parameter.

The SF is introduced originally for studying of long light curves in the
form φ(Θ) =< [F (t) − F (t + Θ)]2 > (Hughes, Aller & Aller 1992). Here
Θ is the time interval between two measurements and the broken brackets
express average over all measurements with the same time interval. Such
SF is utilized successfully for light curves of 10 LBV stars by Gantchev et
al. (2017). Practically, this kind of SF is based on the indicator φjk = s2jk

(Eqs. 6). However, following Di Clemente et al. (1996) we use the SF φ
1/2
jk

instead φjk, which is applied for studying of light curves of AGNs. Such SF
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may be compared directly with the relevant DF and RF(Figs. 5(d)–7(d),
Gallery).

Fig. 8. (a,b): Distributions of the structure gradient (SG, Sect. 2.3) and Hurst gradient
(HG, Sect. 2.4) for 58 MLCs. Dashed or solid segments show the separate (B or V )
distributions or the common (B plus V ) distribution. (c): Mutual distribution of both
gradients. Solid and dashed lines present the ordinary regressions for B and V data,
respectively. The asterisks show the positions of the time series of sunspot index (1),
uniform random process (3) and normal random process (4). The planetarium visits with
SG = 2.72 and HG = −0.21 take place far above the top of this diagram.

2.4. Range function, Hurst function, Hurst gradient and fractal
dimension

The range function (RF), lgR = f(lgΘ), describes the increasing of the
range parameter R (Eqs. 9) with the increasing of the window size Θ. In
contrast to the DF and SF, the RF does not reach saturation. The RF
is constant for uniform random processes only. In this paper the RF is
presented by dashed curve (Figs. 4(b), 5(d)–7(d), Gallery).

The RF is used together with the DF in a rescaled RF, called also
Hurst function (HF), lg(R/D) = f(lgΘ). The initial part of the RF is de-
rived from short window sizes Θ, which contains just a few large deviations.
By this reason the RF and HF are initially underestimated. However, at
larger Θ the HF grows up more slow and tends to a straight line with so
called Hurst gradient(HG):

HG = ∆ lgHF (Θ)/∆ lg(Θ). (12)

The quasi-linear parts of the HFs are presented in the sub-figures (e) by
thick segments, labeled with their HGs. The HG is used (i) to characterize
the auto-correlation in the MLC and (ii) to estimate the fractal dimension
of the MLC (Eq. 13).
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The HF and HG, based on the dull the peak-to-peak amplitude, are
introduced historically by Harold Hurst (1951). He asked whether fluctua-
tions in the cumulative discharge of the Nile River scale similarly. Note that
our HFs and our HGs are based on the half of the peak-to-peak amplitude
(Eq. 9, Eq. 12) and our HG is less of the original Hurst value by 0.3.

Mandelbrot & Wallis (1996) explain this behavior in terms of scale-
invariant long-term correlations and introduce fractal modeling of time se-
ries. They emphasize also that in noncyclic statistical processes the HG
possesses a significant robustness in the estimation of the auto-correlation
in the MLCs, as follows.

A value of HG in the range 0–0.5 indicates a time series with short-
term positive autocorrelation, i.e. with short-term switching between high
and low values in adjacent data points. A value of HG in the range 0.5–1
indicates a time series with long-term positive autocorrelation. From this
point of view, values of HG about 0.5 are not useful. Hurst (1951) derived
HG = 0.77 for the Nile River. (The relevant our value id 0.47.) The inter-
pretation is: every significant positive flow peak has long time tail because
it is due to the contribution of a large feeder of the Nile. Analogous phe-
nomena in our MLCs are missing, at least on time intervals < 60 min.

Despite of some semi-cyclic character of some MLCs, we can not bypass
the HG as robust characterizer of apparent chaos of time series and robust
estimator of the fractal dimension. In contrast to the SG, the HG of our
MLCs is defined by well pronounced quasi-linear parts of the HFs. Because
of the definitions (Eq. 9, Wq. 12) the value of the HG is related with the
fractal dimension (FD) for 1D random process:

FD = 2−HG− 0.3. (13)

Figure 8(b) shows the distribution of our HG (Eq. 12) for 58 MLCs. The
range is 0.1–0.4 with average 0.22(±0.06. This HG value fors not give ev-
idence about domination of short-time auto-correlations. The relevant av-
erage FD for our 58 MLCs is FD = 1.48 ± 0.06.

Comparison with ”edge” time series is again useful. In the case of a
uniform random process, the DF and RF tend to a constant and the ex-
pected value is HG = 0. The central limit theorem in the statistics involves
a power law for the sum of N independently distributed and bound random
variables of mean 0. The size of the sum scales as N1/2. Therefore, for a
random process with normal distribution of the deviations, the expected
HF is lg R/D → 0.5×lg Θ. So, our HG → 0.2, giving FD → 1.5.

The variations of the sunspot index are characterized by our HG =
0.043. This value gives evidence for short-time autocorrelation, due to the
domination of weak short shots, in spite of the presence of well pronounced
large scale periodicity (Fig. 7, left panels). The respective FD is 1.66. But,
while the process is obviously periodic, this is not an ultimate estimation.

In the variations of the planetarium visits we derive our HG = 0.21.
This value shows privilege for short-time autocorrelation, due to the dom-
ination of strong short shots, in presence of weak pronounced large scale
periodicity (Fig. 7, right panels). The respective FD is 1.49. The typical
HG values in this work give evidence that the MLC structure is close to
the structure of the planetarium visits.
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Figure 8(c) juxtaposes SGs and HGs. They do not correlate and do not
hint to some classification of the MLCs (at leat here). The points of the
SGs and HGs of the MLCs seem somewhat bound from the comparative 4
”edge” time series.

Figure 9(c) show that our HG correlates with the time step τM. Note
that in Fig. 5(d), left panel, under low time resolution (τM = 2.1 min),
we found HG = 0.23. But in Fig. 5(d), right panel, under high time res-
olution (τM = 0.62 min), we found HG = 0.16. The increased HG in case
of high time step (low time resolution) of the MLC is due to the observa-
tional transform (smearing) of strong short-time shots (peaks) into more
weak long-time shots. Then the short-term autocorrelation in the MLC is
suppressed and the HG becomes overestimated. This is the reason of the
correlation between τM and HG in Fig.9(c). By this reason any rescaling
of the MLC for ”increasing” of its resolution causes overestimation of the
HG.

Nevertheless, the regression intercept in Fig. 9(c), HG0 = 0.16 ± 0.05
(for B plus V data together) gives another, a little bit higher estimation of
the mean FD of the MLCs, FD=1.68 ± 0.05.

Fig. 9. (a,b): Juxtaposition of SG or HG with time step τM and autocorrelation time
τACF of the MLCs. The ordinary regressions for B, V and B plus V data are presented by
dashed, short-dashed and solid lines, respectively. The correlation coefficients concerns
B plus V data together; (c): Juxtaposition of SG and HG and estimation of HGAV and
HG0 for τM=0, shown along the ordinate axis. Vertical bars correspond to the typical
individual errors.

2.5. Asymmetry function and the shortest shots in the MLC

The skewness indicator a′ and skewness parameter A′ (Eqs. 5) lead to the
skewness function (A′F), A′F = f(lgΘ). This function (without logarithm)
is shown by dashed curves in Figs. 5(e)–7(e) and in the Gallery. Typical
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large scale behavior of the A′F is a decrease. The average final values are
about 0.1±0.3, as in Fig. 3(a).

In the present paper we introduce another asymmetry indicator and
parameter, a and A (Eqs. 10). The relevant asymmetry function (AF), is
lgA = f(lgΘ). This function (with logarithm) is presented by solid curve
in Figs. 5(e)–7(e) and in the Gallery. The general behavior of lgA is similar
to the behavior of A′, but the AF is preferable instead A′F for two reasons.

The first reason is that the AF reveals clearly a strong asymmetry of
the flux changes at the short time scale, in windows containing 3–5 adjacent
MLC points. In such windows the flux often grows up with increasing rate
and grows down with decreasing rate. Fig. 4(d) shows typical fragments of
MLCs with 5 and 4 adjacent points, where the asymmetry indicator a takes
large values.

Figures 10(a,b) show parts of real MLCs where 3 adjacent points give
very high values of a. Figures 10(c,d) show the relevant very high initial
parts of the AFs. This means that faint shots with short durations have
wide presence in the MLCs.

Fig. 10. (a,b): Part of the MLC #10B (71 points) with the shortest time step (0.4 min)
and the entire MLC #09V (34 points) with the largest time step (3.5 min). The ellipses
encompass triades of points giving very high asymmetry indicators a; (c,d): The relevant
asymmetry functions showing very high values at short time scales and well pronounced
breakdown time-points, ΘB at 1.57 min and 20.2 min, respectively.
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The second reason is that in contrast to A′F, in the majority of the
MLCs (48 cases), the AF shows well defined breakdown time-point (BT),
ΘBT. The BT is marked by thick vertical segment in Figs. 4(c), 5(e)–7(e)
and in the Gallery. Though, B MLCs ## 1, 12, 16, 17 ,20 and 21 and V
MLCs ## 2, 13, 16 and 17 do not pose BTs.

Figure 11 illustrates the usefulness of AF instead A′F – the remarkable
dependence of the BT ΘB on the time step τM. This dependence has an ex-
ponential shape, i.e. linear shape under logarithmic ordinate. The intercept
ought to be interpreted as the half-time, τ0/2, of the shortest shots in the
MLC variations. So, the mean duration of the elementary shot is roughly
estimated to be τ0 = 3.61± 0.79 min.

Fig. 11. Dependence of the BT ΘB of the AF on the time step τM presented by an expo-
nent (a) and a power function (b). ”SE” means standard error. The regression intersepts
are interpreted as characteristic time duration of the shortest shots.

For comparison, in Fig. 7(e) the AFs and A′Fs of the sunspot index W
and the planetarium visits N show a global increase. The AFs tends to A ≈
2 and A ≈ 3, respectively. In contrast to the initial part of the AF for W ,
the initial part of AF for N has high values, just like the majority MLCs,
with BT about τ0/2 = 4 weeks. The reason is a presence of about 8 weeks
inter-year QP, corresponding to the scholar schedule (already marked in
Fig. 7(d), right panel). The variations of W do not show such particularity.
The reason is obviously the low resolution of the used time series, τM = 2
months, while the most of the sunspot groups last for only a few days.

3. Distributions of the quasi-periods

In Paper I, working in magnitude scales, we show that QPs exists in all
MLCs. In the present paper, working in linearized and flattened MLCs
(Eqs. 1 and 2) we justify the QPs and their distribution.



56 Ts. B. Georgiev, R. K. Zamanov, S. Boeva et al.

3.1. Structure function, quasi-periods and auto-correlation
function

The SF (Sect. 2.3) is also a good detector of QPs in the apparent chaos of the
MLC. After the initial quasi-linear part of the SF, while the data window
Θ continues to increase, the SF tends to saturate like the DF (Sect. 2.2),
but typically slower and at lower level. However, when the window size Θ
begins to envelope a repeating structure, the SF tends to a local minimum.
From this point of view in a periodic time series the SF plays just the role
of the the phase dispersion minimization function (Lafler & Kinman, 1965).
A very good demonstration on a Cepheid light curve is shown by Ganchev
et al. (2017, Fig. 5).

The position of a local minimum of the saturated part of the SF is
estimation of a QP in the MLC. In Figs. 4(b), 5(d)–7(d) and the Gallery,
such QPs are marked by vertical segments. If the MLC is long enough , it
may contain repeat(s) of a dominate structure with some QP, P . Then the
SF shows ”harmonic” minima also at Θ=2P , Θ=3P , etc. The shortest well
unveiled QP with value P is considered as main, or primary, or basic. In
the diagrams it is marked by solid vertical segment, labeled above by the
value of P . The relevant harmonic period 2P , if it is enveloped by the SF, is
marked by a shorter solid vertical segment without label (Figs. 5(d)–7(d),
Gallery). Main QPs are found in all 58 MLCs (Tables 3 and 4).

Accounting to the local minima of the SF, we unveiled 20 other remark-
able QPs, not harmonic (not multiple) of the main QPs (Table 5). Any such
QP is considered here as alternative, or secondary, or additional. Such QP
is marked by dashed vertical segment, labeled above by the relevant P .
The ”harmonics” of the alternative QP, with value 2P , if it is enveloped by
the SF, is marked by shorter dashed vertical segments, without label. For
example, in Fig. 5(d) the values of the primary QPs in B and V MLCs are
40 min and 38 min, respectively. The secondary QPs are 70 and 68 min,
respectively.

In 6 of our MLCs (## 07B, 08B, 10B, 07V, 16V and 21V; Table 5)
we find also ”tertiary” QPs, which are not multiple of the primary or the
secondary QPs. They are marked by short-dashed vertical segments.

Sometimes a faint local minimum of the SF hints of a QP with P < 15
min. We revealed such short QPs in 13 MLCs, 9 in B and 4 in V band
(Table 5). All these QPs are marked by short-dashed vertical segments,
labeled from above. For example, such QP with P = 13.2 min, is detected
in Fig. 5(d), in the V MLC.

In this paper all QPs, detected by SFs, are checked and confirmed by
relevant ACFs of the MLC. The ACF has the form f(τ) =< F (t)F (t +
τ) > and it is utilized on uniformly sampled and flattened time series.
Here τ is the time lag of the measures. The QPs cause local maxima in
the ACF (Fig. 5(f)–7(f), Gallery), marked in the same manner as in the
diagrams of the SFs. The most left vertical segment in sub-figures (f) marks
the characteristic auto-correlation time τACF – the time in which the ACF
crosses the zero level at first time.

Some MLCs have short time interruptions for justifications of the tele-
scope positions. Such MLCs are unfit for ACF analysis. They are addition-
ally re-sampled with steps equal to the average time step τM of the MLC.
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The re-sampled MLCs are used only for the ACFs. Re-sampling with in-
creasing of the resolution increases artificially the HG, as it is shown in
Fig. 6.

Fig. 12. Distributions of 97 QPs from 58 MLCs of RS Oph in 6 modes. (a,b): Histograms
of the QPs separately (dashed curves) and commonly (solid curves) – only the primary
58 QPs (a) and all 97 QPs (b); (c,d): Increase of lgP with the serial number of the QP
mode M for 6 observed mode values with a relative error about 5% of P – as exponent
(c) and as power function (d).

An unexpected QP of 8.35 weeks (2 months) is found in the planetarium
visits (Fig. 7(d), right panel). The reason is the specific annual regime of
the Bulgarian pupils and students.

3.2. Modes in the distribution of the quasi-periods

In this paper 97 QPs are detected by DFs and confirmed by ACFs. Among
them 58 are primary, 20 are secondary, 10 are tertiary and 13 are found
additionally as quite short (sub-figures (d) and (f) in Fig. 5 and Gallery).
The analyzed MLCs are really very complicated.

Figure 12(a) presents the distribution of the primary 58 QPs only, 29
in B MLCs and 29 in V MLCs. They follow 4 well pronounced modes, at
21, 30, 48 and 73 min. Figure 12(b) shows this distribution after including
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of 20 secondary, 6 tertiary and 13 short QPs. The same 4 modes are well
revealed and the shortest 13 QPs contribute 2 QP modes – at about 8 min
and at about 13 min.

Figure 12(c,d) presents the basic result in this paper – 6 observed mode
times of the QPs, which follow well an exponential function on the serial
number M :

PM = 3.45 × exp(0.44 ×M) or lg PM = 0.54 + 0.19 ×M. (14)

The respective power dependence of the quasi-period P as function on
the serial number of the mode M is:

PM = 3.48× 1.55M , (15)

with standard error of 4.7%.
These dependences seem to be forms of a resonance consequence with

quotient 1.55 ≈ 3/2. They predict at least 3 other modes, at 3.5 min, 5.3 min
and 115 min, but these modes are undetected in this work.

Figure 13 presents the QP modes over the logarithmic time scale where
they are placed along an arithmetic sequence. Note that the shortest shots,
with durations about 3.6 min (Sect. 2.5), take position close to modeM = 0.
The quotient of the power function is invariant toward the zero-point of the
serial numbers. By this reason we assign M = 0 to the shortest suspected
QP, i.e. P (0) = 3.5 min.

Fig. 13. Distribution of 97 quasi-periods of RS Oph over logarithmic time scale in 6
observed modes, marked by solid vertical segments. Other 3 predicted modes are marked
by dashed vertical segments. The shortest shots, with duration 3.6 ± 0.8 min (Sect.2.5),
marked too, are close to the predicted short with P = 3.5 min.
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Figure 14(a) unveils the detectability of the QPs in juxtapositions with
the monitoring time TM. While the left-up half of the diagram is empty, the
detection zone is well bounded by the bisektrise of the coordinate axes. The
number of the large QPs (P > 60 min) is small, because they are detectable
only in the very long MLCs. Numerous QPs with P = 20−40 min are found
because they are detectable in almost all MLCs. The right-down corner of
the diagram is almost empty because various short time structures with
P < 15 min are smeared or their QP evolve in a long MLC. We found only
13 such QPs (Sect. 3.1), included in the down part of the diagram.

Fig. 14. Detectability of the 97 QPs – 42 in B MLCs (1), 42 in in V MLCs (2), and 13
the shortest, commonly in B and V (3), in juxtaposition with the MLC observing time
TM (a), the MLC time-step τM (b) and the ACF time τACF (c).

Figure 14(b,c ) juxtaposes the QP P s with the MLC time step τM and
ACF time τACF. The detection zones are bound from the right-bottom by
lines with gradients about 5 and about 1, respectively. The shorter QPs
may be detected with shorter time-step. Otherwise, here the hidden short
time structures cause increasing of the ACF time. Obviously, the applied
QP detection is the most effective for time structures with sizes 20–60 min.

Two main conclusions are obvious here. First, the modes of the QPs
follow well exponential (or power) dependence, similar to a 3/2 resonance
sequence. Second, the well defined bounds of the detection zones in Fig. 14
give evidences for the uniformity and the efficiency of the method, used for
unveiling of QPs.

3.3. Quasi-periods and their flickering energies

In the end the correlation between the QPs and their ”energy”, revealed in
Paper I, will be revisted and justified. The plateau levels of the DF δb or
δv (Sect. 2.2), corresponding to the QPs P , detected by the SF (Sect. 3.1)
are a measure of the relative energy of the flickering, associated with the
QP structure and its cumulative substructures.
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Figure 15(a,b) shows the histograms of the energies and their corre-
lations with the QP. The QPs in the MLFs #05V, #20V1 and #20V2
correspond to abnormal high energies. They are shown in Fig. 15(b), but
not used in the calculations.

Figure 15(a) shows that the energies δb or δv belong to the interval 0.02–
0.08 (approximately from 0.02 to0.08 mag). TheB distribution is unimodal,
with peak at 0.046 ± 0.008, with clear positive asymmetry. However, the V
distribution is somewhat flat, with low peak at 0.051 ± 0.012. The apparent
flatness is due to the heavy right wing of this distribution.

Fig. 15. The QPs and their flickering energies δb or δv for 93 QPs. (a): Histograms and
average values of the energies; (b): Regressions of the energies (separate and common)
in respect to lg P . The QPs with the most deviated energies (asterisks) are not used in
calculations.

Figure 15(b) shows that the flickering energies correlate with the loga-
rithms of the QPs with CCs 0.61 and 0.40 (in Paper I – 0.68 amd 0.47), in
B and V bands, respectively. The regression gradients are about 0.02 (In
Paper I – 0.04 and 0.03 in B and V , respectively).

Figure 15 gives evidence that the relative energy of the flickering corre-
lates, at least weekly, with the QPs. The distinctions between this Fig. 15
and Fig. 10 in Paper I are small and they are due to the use of different
scales of the MLCs.

4. Conclusions

In this paper a system of specific statistical methods (fractal approach)
is applied to the MLCs of the flickering source in the RS Oph. The main
results are, as follows.

1. The more bright MLCs of the flickering source are more red (Fig. 1(a,b,c),
cf. Zamanov et al. 2018). Rare strong single shots in the MLCs of the flick-
ering source appear also more red than the neighbor parts of the MLC.



Flickering of RS Oph. II. 61

2. The distributions of the skewness and kurtosis of the deviations of
the MLCs show that in about 1/4 of the cases the flickering is similar to a
normal random process. Otherwise, in about 1/2 of the cases the flickering is
similar to an uniform random process. Then the light curves of the flickering
source pose deficit of short deviations (Fig. 2(b), Fig. 3(a,b)). Deficit of
large deviations, such as negative impulses (obscures) or positive impulses
(shots) is obvious too (Fig. 3(a,b)). In such cases the flickering fluctuations
seem similar to oscillations. Various light curves are available. They may
show quasi-periods, like the variations of the sunspot index or they may
show sharp variations like the changes of the planetarium visits.

3. The distributions of the gradients of the structure function and Hurst
function (Fig. 8(a,b)), show that the light curves are significantly different
from the uniform and normal random processes. Simultaneously, the flick-
ering is similar to the sunspot index variations by its structure gradient, i.e.
by presence of faint short shots and more strong long quasi-periods. The
flickering is similar also to the planetarium visit variation.It gives fractal
dimension 1.48 ± 0.06, corresponds to indeterminate autocorrelation. The
relevant fractal dimensions for the the sunspot index and planetarium visits
are 1.66 and 1.49, respectively (Part 2.4).

4. Generally, local disk shots and global disk instabilities are present in
the intra-night flickering with changeable superiority, with some privilege
of the disk instabilities. The mutual distribution of structure gradients and
Hurst gradients in Fig.8(c) take large place between the comparative 4
”edge” time series, but does not lead to some classification of the light
curves.

5. The asymmetry function, introduced in this paper (Sect. 2.5), gives
estimation of the mean duration of the shortest positive shots, 3.6 ± 0.8
min (Fig. 11).

6. Quasi-periods are found in all flickering time series. The quasi-period
of about 21 min corresponds the most widespread time structure size. The
modes in the distribution of the quasi-periods are placed at about 8, 13,
21, 30, 48 and 73 min (Fig. 12, 13). The respective power dependence of
the quasi-period P as function on the number of the mode M is PM =
3.48 × 1.55M , with standard error of 4.7%. This function predicts modes
also at 3,5, 5.3 and 115 min, which are not detected in this work. However,
the characteristic duration of the elementary shot, 3.6 ± 0.8 min (Fig. 11),
corresponds well to the predicted mode at 3.5 min. The mode distribution
corresponds also to a power function with base 1.55 ≈ 3/2, hinting about
somewhat 3/2 resonance.

7. The weak correlations between the quasi-period and its cumulative
flickering energy (plateau level of the density function), found in Paper I,
is confirmed with the slope coefficient 0.02 (Fig. 15).
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