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Abstract
Reality is a question of perspective; the further you
get from the past the more concrete and plausible
it seems — but as you approach the present, it
inevitably seems more and more incredible.

Midnight’s Children (All-India Radio)
Salman Rushdie

This is an interesting time for cosmology since it seems that our
theories for the large scale structure of the Universe are being seriously
challenged by the growing amount of data. The goal of these lectures
is to introduce and explain the current debate on this issue. By its
very nature the problem of the large scale structure is one that mixes
both observational and the theoretical aspects of cosmology. The plan
of the lectures is first to discuss the general theoretical framework for
cosmology, and then go on to discuss the impact of key data. In
this article, I shall try to build up the essential concepts from simple
starting points. More details can be found in a number of books and
review articles.



There are many fine books on cosmology. There are the two great
”classics” Physical Cosmology by Peebles (1971) and Gravitation and
Cosmology by Weinberg (1972). The 1980’s brought The Large Scale
Structure of the Universe by Peebles (1980, referred to hereafter as
"LSSU”), volume 2 of Relativistic Astrophysics by Zel’dovich and
Novikov (1980), and The Isotropic Universe by Raine (1981). These
are becoming somewhat outdated owing to the rapid progress in cos-
mology in recent years, but they do discuss the fundamentals of the
subject. At a pedagogical level, the book by Berry (1976), Principles
of Cosmology and Gravitation is highly recommended.

In recent years we have The Early Universe, Facts and Fiction
by Borner (1988), The Early Universe by Kolb and Turner (1990),
and Physics of the Early Universe edited by Peacock, Heavens, and
Davies (1990). This last book contains a fine review article by White
(1990) on Physical Cosmology and another on inhomogeneities in the
universe and in particular their contribution to microwave background
anisotropy, by Efstathiou (1990).

There are numerous conference proceedings and reviews on the
subject. An outstanding conference book is the ”Vatican Study Week:
Large Scale Motions in the Universe” (Rubin and Coyne, 1988). There
is also a recent review on the large scale structure by Kashlinsky and
Jones (1991).

It is of course impossible to discuss everything about the large
scale structure of the universe, and even less possible to cite all the
appropriate references. My strategy has therefore been to provide a
background against which some of the major issues can be addressed,
and to give enough recent references to enable the reader to get into
the bibliography on those issues.

I have tried to stick to the question of the large scale structure and
not get drawn into issues of galaxy formation or even galaxy cluster
formation. There is no doubt that these have an important bearing
on large scale structure, but they have not as yet played a decisive
role. For example, the question of the biasing of galaxy formation has
so far been tackled in a rather simplistic way and there may now be a
need to go into the details of the process by looking more carefully at
the galaxy formation process. On the other hand I have gone a little
way into the question of inflationary universes and the origin of the
fluctuation spectrum since this is a major issue as regards the scale of
the largest structures.

Throughout this article I shall use a distance scale correspond-



ing to a present value of the Hubble constant Hy = 100k km s=!
Mpc ! and the reader can substitute her/his own favourite value for
h. 1 shall endeavour to use ”Universe” whenever I mean the place
where we live, and ”universe” for a model of the Universe. Similarly,
"the Galaxy” is the ”galaxy” where we are situated. I shall try to
avoid abbreviations, but the following bits of jargon are frequently
encountered and may slip into the text: "CDM?” for ”Cold Dark Mat-
ter”, "HDM?” for ”Hot Dark Matter”, ”LSSU” for Peebles’ book " The
Large Scale Structure of the Universe”, "MWB?” for ”Microwave Back-
ground” and ”CBR” for the ”Cosmic Background Radiation”. Gen-
erally MWB and CBR are used interchangeably, despite the fact that
there are many background radiations that are not in the microwave
band (such as the X-ray background, but that would be an ?XRB”!).
I will studiously avoid ”GA” for ”Great Attractor” and but I will use
the shortened form ”S7” for the names of the people involved in its
discovery (Burstein, Davies, Dressler, Faber, Lynden-Bell, Terlevich
and Wegner, in alphabetic order).

1 OVERVIEW

In this section, I shall give a brief overview of the properties of the
Universe at large. On the largest scales it can be reasonably approxi-
mated as a homogeneous and isotropic medium in a state of uniform
expansion and the equations can easily be written down. We find
that such a simple model Universe can be described in terms of a few
parameters, the expansion rate, the density, and perhaps the cosmo-
logical constant. Classical cosmology focusses on determining these
by direct observation of the large scale distribution of galaxies. There
are, however, many new techniques available for getting these param-
eters though studying the inhomogeneity of the Universe. These will
be the subject of the following sections where many of the issues raised
here will be discussed at greater length.

1.1 The Universe at Large

Hubble discovered the expansion of the Universe by plotting, for a
sample of galaxies, the radial velocity of each galaxy as indicated
by the redshift of its spectral lines against its apparent brightness.
The fainter (and presumably more distant) galaxies had the greater



recession velocities (or "redshifts”). If the distance to a galaxy was
D Megaparsecs, and its radial velocity was V km s~!, then Hubble’s
relationship could be expressed as

V =HyD, (1)

where Hj is a constant (the Hubble constant) measured here in units
of km s~' Mpc~! Implicit in the relationship is the assumption that
we can calibrate the distance scale by virtue of which the apparent
brightness of a galaxy can be turned into a distance.

The radial component of the velocity of a galaxy relative to the
observer is inferred by observing the wavelength Ap of spectral lines
that would in the laboratory have been emitted wavelength Ap. The
difference A = Ao — Ag is interpreted as being due to the Doppler
shift caused by the fact that the galaxy was moving at velocity

v=c— (2)

relative to the observer. (We shall henceforth drop the ‘E’ suffix on the
emitted wavelength). The redshift of the galaxy (in fact the redshift
of the spectra lines) is defined as

v A

2= = (3)

Hubble’s redshift-distance relation (the "Hubble Law”) later became
a way of estimating the distances to galaxies simply by measuring
their radial velocities D, = Hglcz. (D, has the subscript z to denote
the nature of this distance estimate and to distinguish it from the
true distance. We shall see later that part of the velocity ¢z may be
due to the random motions of galaxies relative to the general cosmic
expansion.)

Looked at in its most simple terms, Hubble’s discovery implies
that the Universe was born a finite time in our past and emerged
from a state of infinite density. The subsequent discovery by Penzias
and Wilson (1965) of a cosmic microwave background radiation field
and its interpretation as the relict of an expansion from a hot singu-
lar state by Dicke, Peebles, Roll and Wilkinson (1965) established a
definitive view of our Universe. Cosmology properly became a branch
of physics, and the Hot Big Bang theory has become a paradigm of
modern science.



1.1.1 Homogeneity and Isotropy

On the smallest scales the Universe contains stars that are grouped
into galaxies, that are themselves grouped into clusters. Going to
larger scales we have evidence for clusters of galaxy clusters, and be-
yond that for large scale structures ("walls” of galaxies!) extending
over many tens or even hundreds of megaparsecs. Indeed pictures of
the three dimensional distribution of galaxies look very inhomogeneous
even on scales as large as 100 Mpc, or more. However, one should not
be mislead by visual appearances. As will be explained later, this
large scale inhomogeneity has rather a small amplitude in the sense
that it would hardly be noticeable if the distribution of galaxies were
smoothed over such large volumes. There is a clear tendency for the
Universe to become more homogeneous on ever large scales.

Hubble himself commented on the remarkable large-scale isotropy
of the Universe as judged from the distribution of galaxies on the sky.
Today we have catalogues of galaxies penetrating to great distances
(Maddox et al., 1990) and these demonstrate the isotropy of the galaxy
distribution very clearly. The isotropy of the Universe is best measured
through the isotropy of the cosmic microwave background radiation.

The large scale homogeneity of the Universe is more difficult to
establish directly. It would seem reasonable to use the argument that
we are not at the center of the Universe, so the isotropy must imply
spatial homogeneity, but this is not a proof of homogeneity. The same
deep galaxy catalogues provide a test of homogeneity because we can
ask the question ”is the Universe, sampled at various depths within
this catalogue, the same?”. Again the Maddox et al. (1990) catalogue
provides an answer, though the method is not as simple as observing
isotropy. Maddox et al. compute the galaxy clustering correlation
function at various depths in their catalogue and find that the func-
tions in the various samples scale in accordance with the hypothesis
of homogeneity. Their analysis in fact goes even further than merely
saying that the Universe is globally homogeneous. It has the addi-
tional implication that the deviation from homogeneity (as evidenced
by the galaxy clustering) is itself the same in all their samples.

Such arguments provide compelling evidence that the Universe is
not a hierarchy of the kind originally envisaged by Charlier (1908,
1922), and taken up more recently in the context of fractal distri-
butions of galaxies by Mandelbrot (1983), Coleman, Pietronero and
Sanders (1988) and others.



1.1.2 Scale Factors, Redshifts and all that

For most of what concerns us in these lectures it is sufficient to con-
sider the Universe to be, in a first approximation, a homogeneous and
isotropic distribution of particles (galaxies) that interact only through
their mutual gravitational interactions. This means that we ignore any
pressure contribution from their random motions, or from other com-
ponents of matter. This enables us to greatly simplify the dynamical
equations for the evolution of the Universe.

Consider the motion of a galaxy in the Universe that today (#¢) is
at distance [y from us and that at time ¢ was at a distance [(¢). It is
convenient to define the scale factor a(t) by

a(t) = —. (4)

Since the Universe is presumed homogeneous and isotropic, then a(t)
depends on neither position nor direction. It merely describes how rel-
ative the distances change as the Universe expands. We have normal-
ized all lengths relative to their present day value and so the present
value of a(t) is a(ty) = 1.

The Einstein equations (or their Newtonian equivalent) in the sim-
ple case of homogeneous and isotropic dust models give the differential
equation for the scale factor in terms of the total mass density p:

1 d%a 4G

caz =3 " ©)

This is supplemented by an equation expressing the conservation of
matter:

dp a

—+3-p=0 6

o T3.7=0, (6)
which is equivalent to

plt) = poa. (7)

Note that (5) is not valid if there is any substantial pressure due to
the matter in the universe, and in that case we also need to modify
(6). We shall make these modifications at a later time when needed,
for the moment we are only discussing the Universe at the present
time and in its recent past when equations (5, 6, 7) are thought to be
a good approximation.



The Hubble Parameter is defined as

H=2_ f) (8)
a
and is a function of time. H describes the rate of expansion of the
Universe and has units of inverse time. It is experimentally measured
as a velocity increment per unit distance since it describes the expan-
sion through the relationship between velocity and distance: [ = HI ,
or in more familiar notation v = Hr.

We define the redshift to a galaxy at distance [ to be

1
l4z=-
+ z " (9)

When we look at a distant galaxy we are looking at it as it was in the
past (because of the finite light travel time). At the time we are seeing
it, the scale factor a(t) was smaller than the present value (ap = 1). It
can easily be shown that the recession velocity we measure from the
shift in the spectral lines is just cz, in other words, the quantities z
appearing in equations (3) and (9) are the same thing.

1.1.3 Important quantities: Hy, (), p.

At this point it is convenient to introduce some fundamental defini-
tions. Hubble’s expansion law states that the recession velocity of a
galaxy is proportional to its distance from the observer, in other words
[ x lg. The constant of proportionality (the cosmic expansion rate) is
the present value of the Hubble parameter:

lo  ao

Hy ) (10)

lo ao
Hy, the present value of the Hubble Parameter, is usually called ” Hub-
ble’s Constant”.

There is an important value of the density, p., that can be derived
from the Hubble parameter (the Hubble parameter has dimensions
[time] !). This is the density such that a uniform self-gravitating
sphere of density p. isotropically expanding at rate H has equal kinetic
and gravitational potential energies:

3H?
Pc = G (11)

Since H is a function of time, then so is p,.
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We can measure the density of the Universe in terms of p. by
introducing the density parameter €):

P

Q o (12)
Note that €2 also depends on time and we shall denote the present
day value of 2 by Qy. There may be a mixture of different type of
matter in the universe that make up the total density p. We may
think, for example, of baryons, photons and perhaps some exotic ele-
mentary particles. Each of these individually has a density that can
be normalized relative to p., thus each species has its own 2. We will,
for example, denote the contribution of Baryonic material to the total
cosmic density by Qp.

The density p. has a special significance. A universe whose density
is p. when its expansion rate is H is referred to as an Einstein de Sitter
universe. This model clearly has 2 = 1 at all times. The expansion
rate of such a universe is fixed by the density. Model universes that are
denser than p, = 3H?/87G when their expansion rate is H will stop
expanding and contract down to future singularity. Models that are
less dense will expand forever. The 2 = 1 universe is a limiting case
dividing two classes of behaviour and that is why the parametrization
of the density in terms of p, is so useful. The behaviour of the various
model universes as a function of €2 can be seen by looking at dynamical
equation for the expansion factor a(t).

Equations (5) and (7) for a(t) can be shown to integrate to

N
(%) — QoH2a® — Ho(Q — 1)a 2. (13)
The integration constants have been derived using the boundary con-
dition that a(t) — 0 as t — 0,(a/a)o = Hp and that the present
density of matter is pg = 2¢p.. The standard textbooks referred to
above give the solutions of this equation for general values of Q. It is
sufficient here to note that the case 29 = 1 simplifies the right hand
side of this equation and the solution is then particularly simple

a(t) o« t3 Qp=1.

Since a(t) = (142)~! this tells us that when we look back to a redshift
z in Einstein de Sitter universe3we are seeing the universe when its
age is a fraction t/t) = (1 + z) 2 of its present age, .



1.2 The Hubble Parameter h

Determining the Hubble constant, Hy, requires that we have a way of
getting the distance to galaxies independently of their redshifts. The
history of determining the extragalactic distance scale is in itself a
fascinating subject (Rowan-Robinson, 1986) and even today there is
considerable uncertainty. There seems to be two distinct bodies of
opinion, one clustering its estimates of Hy around 50 km s~! Mpc™!
and the other around 80 km s~! Mpc~!. We shall absorb this igno-
rance into a ”Hubble parameter” h defined so that

Hy =100k km s~ Mpc L.

So all distances quoted will contain the quantity h, and the reader is
invited to substitute her/his favourite value.

It is probably safer in practise to use radial velocity to express
distances. This reflects the Hubble law and so when we say a galaxy
is at a distance of 30h™' Mpc. we could equally well say it is at a
distance of 3000 km s~!. This is fine, but it may look a bit strange
to say that a void has a diameter of 5000 km s~', or to say that the
galaxy clustering correlation function drops to unity on a scale of 500
km s~ L.

The present value of the Hubble Constant, Hy, and the density
parameter, €2y, together determine the present age of the universe. In

the case of an 2y < 1 universe:



1 1 2 1 2
b= e gt (1)) e<t
0 Ho L(T—Q0) Qo (1 — 032" 0 0
— Hy', Q) — 0,
2
- gHo_l, Qo — 1,

It is certain that there should not be any objects older than this in the
Universe, so determining ages is an important way of constraining the
values of Hy and §2y. It seems that the oldest known stellar systems for
which we can determine ages have ages in excess of 16 Gyr. (Sandage
and Cacciari, 1990). If we accept this value, then we see that an
Qo = 1 universe is always too young unless Hj is considerably lower
than any of the values so far put forward. An open universe with
Qo < 0.1 can work provided Hj is at the lower end of the suggested
range of values.

What are we to make of this? That neither age determinations
of star clusters nor the extragalactic distance scale can be relied on,
with the latter probably being the most uncertain. Introducing a
cosmological constant would of course help.

1.3 The Cosmological Constant A

The cosmological constant has been recently reviewed by Peebles (1988)
and by Weinberg (1989). (See also Klapdor and Grotz, 1986). The
wealth cosmological models that can arise through simply introducing
A is discussed in the great ancient book by Tolman (1934).

1.3.1 Expansion with A

Einstein presented a version of his famous field equations containing
an additional constant of nature, the Cosmological Constant, A. The
consequence of introducing this ad hoc term into the equations can
be seen by studying the dynamical equations with the A-term. In the
simplest case of zero pressure (which approximates the present day
circumstances):

lda _ 4G A
adz 3 P73

This is the generalization of (5, 6, 7).
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A positive A-term increases the acceleration of the expansion, and
gives rise to the possibility that the two terms on the right hand side
of (14) can at some time during the evolution balance:

AtGpp = A, p=0.

This ”zero-acceleration” time can easily be shown to occur at a redshift
zp given by

2A \3
].+ZA: m

At a time before the discovery of the cosmic expansion by Hubble,
Einstein proposed that the Universe could be static if there was such
a A term, and that the value of A would determine the cosmic density.
The later discovery of the cosmic expansion did not, however, cause
people to drop the A term from the equations.

We can integrate (14) once. Using the conservation of matter ex-
pressed as p = pa~> (equation 7), we get

Ny
a 8rGp(t) Kk A
=—" — =+ —. 14
( ) 3 a? + 3 (14)
The A version of equation (13) follows by evaluating the integration
constant k (the curvature constant) at the present epoch:

a

A
k:H3(90—1)+§, (15)
to give
1\ 2 A A
<§> = QoHZa™? - 37 H3(Q —1)| a2 + 3 (16)

A universe with £ = 0 is said to be "flat”. If A = 0, then the flat
universe is a = 1 universe (the Einstein de Sitter model). There
is a considerable body of opinion in favour of £ = 0, but until the
idea of an early ”inflationary” phase of expansion was introduced by
Guth, the reasons for favouring such a model were largely aesthetic.
Inflation generally demands k = 0. (There was an argument that large
scale structures would have to form very early (z > Qy ) if Qg were
small. Since we see the quasar population growing to a maximum
more recently than a redshift of 3, this would suggest a relatively
recent formation epoch for galaxy clusters if we could think of some
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argument relating QSO activity to the origin of clusters! We have
in fact no direct evidence as to when the first large scale structures
formed.)

1.3.2 The )\ parameter

Note that we can introduce a dimensionless measure of A:

A
© 3HE

Then the curvature constant, £ becomes

A (17)

k=HE\+Q—1).

The k = 0 flat universe such as implied by inflationary theories there-
fore has

Ao+ Qo =1.

If we argued that the dark matter was all baryonic, contributing
Qo = 0.2, then we would need A = 0.8 for consistency with standard
inflationary scenarios.

The coasting redshift in terms of A is

1
20\ 5
1+zA:<Q—>3. (18)
0

For values of A\ such as those described above for a flat universe we
see a coasting period at relatively recent redshifts zy ~ 1 — 2.

1.3.3 Why introduce A?

Current thinking on the issue of whether A should be there or not
varies over a short timescale of a few years. There is certainly no ob-
servational evidence for including the A term in the equations. From
the point of view of our limited understanding of the status of the Ein-
stein Field Equations in Quantum Field theory, there is every reason
to want it to be exactly zero. However, it brings an extra parame-
ter into the cosmological model and an extra degree of freedom with
which to fit the observations. Thus we often see it being brought in
at a time when there appear to be difficulties in explaining a set of
observations.
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A notable example of ”"wheeling in the cosmological constant” was
in the case of explaining why there were so many more Quasars having
a redshift near to 2 than might have been expected. This could be
explained by putting the coasting period at a redshift of 2 (Petrosian,
Salpeter and Szekeres, 1967). More recently, it has been noticed that
certain standard models for galaxy formation do not have enough clus-
tering on the largest scales. This might be explained in part by the
dynamical influence A could have on the formation of large scale struc-
ture (Efstathiou, Sutherland and Maddox, 1990; Lahav et al. 1991).

1.4 The Value of ()

The luminous matter itself accounts for only Q. ~ 0.005h2 (Faber
and Gallagher, 1979). This was discovered long ago to be insufficient
to account for either the flat rotation curves of disk galaxies (the dark
massive halo problem, Rubin (1988)), or for the velocity dispersions of
groups and clusters of galaxies (the virial mass discrepancy problem,
Zwicky (1933)). It later became apparent from cosmic nucleosynthesis
arguments that the baryonic density of the universe was substantially
higher than the density inferred from the luminous material. There
is ”dark (nonluminous) baryonic material” in some form or other,
perhaps warm gas, or even very low luminosity stars. The amount of
baryonic dark matter inferred from nucleosynthesis appears to be just
about enough to explain the cluster virial mass discrepancy problem
in most clusters of galaxies. However, this would not be sufficient to
make g = 1. Whether we care about 2y # 1 is a central issue of
cosmology, so I shall discuss briefly the various ways we get at {29 and
why we should strive to get Qg = 1.

But first a word of caution which we will continually return to
throughout these lectures. Determinations of ¢ are frustrated by
the fact that )y describes the quantity of gravitating matter in the
universe, whereas we only see the luminous material which is but
a fraction of the total mass density. If the luminosity density were
everywhere proportional to the mass density, this would not prove a
problem since it would only be necessary to discover what the sealing
factor is. However, it is evident that the mass and light are distributed
differently on different scales and some other hypothesis is needed.

The simplest hypothesis of this kind is that the fluctuations in mass
density about the mean are proportional to the fluctuations in light
density. The constant of proportionality is referred to as the biasing
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parameter and it is denoted by the symbol b. We shall encounter this
frequently in what follows. Note that the constancy of the biasing pa-
rameter is merely a simplifying hypothesis, the actual situation could
be far more complicated.

1.4.1 The Deceleration Parameter ¢

The central task of classical cosmology was to determine the cosmic
expansion rate, Hy and the deceleration parameter qq:

dO _2]. dza
Hy=2 g=-m2=(22) 19
0 (10’ q0 0 a0 <dt2>0 ( )

Hjy was seen as the slope of the velocity-distance relationship and ¢q
as the deviation from the linear Hubble law, its curvature, due to the
gravitational deceleration of the cosmic expansion.

Note that by virtue of equation (5) and the definition of 4 (equa-
tions (11) and (12))

1
qo = 590 + >‘7 (20)

with A\ = A/3HZ. This relationship between €y and qo holds only as
long as equations (5, 6, 7) or (14) are valid; that is, provided there
is no cosmic pressure. The Einstein de Sitter universe has gy = 1/2
(since A =0 and Qy = 1).

We can calculate the relationships between the redshift of a galaxy
and various observed properties such as brightness, look-back time
and surface brightness. For example, the look-back time, measuring
the time elapsed since photon was emitted at time tg, to redshift z is

z 1
to—tg=—|1—(14+= 21
0— B Ho{ (+2(I0)Z+ :|7 (21)
for small z.
The apparent brightness [ is related to the intrinsic luminosity L
9

by
= L (o’ ]
dr \ ¢ goz + (g0 — 1)(1 +2q02)7 |

and for not too distant galaxies (z < 1), this simplifies to

(22)
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2
z:%(%) L+ (g0 — 1)z +.... (23)

This expression is also exact in the limits gg = 0 and gy = 1. The first
terms are simply the standard 2 inverse square law, the correction
due to the ¢y term is due to the deceleration of the expansion. In
astronomical units this is

m = M + 25 —5log,y Ho + 5log;ocz + 1.086(1 — qo)z + ..., (24)

where m is the apparent magnitude of a galaxy of absolute magni-
tude M seen at a redshift z. (Technically, these are the luminosi-
ties or magnitudes integrated over the whole spectrum of the emitted
light. If the measurements are done in a restricted spectral band,
then other terms come into this relationship, these are the so-called
K-correction terms). This expresses the Hubble Law directly in terms
of a magnitude-redshift relationship.

Note that any intrinsic evolution of the quantity L (or the absolute
magnitude M) will introduce non-geometric effects into the relation-
ship and so confuse the determination of g¢yp. We can approximate this
by assuming that the luminosity evolves as

L(t) = Lo[l + a(t —to)], (25)

when expressed as a function of look-back time ¢ — tg. Relating look-
back time to redshift then yields

L [H,
! <—°

T 4n \ ez
showing an extra linear dependence on z. Thus if this relationship is
used to measure gy, the (unknown) evolutionary correction biases g
downward by aH L

In the small z limit, we can also calculate the number of galaxies
N(m) we would see in a galaxy survey down to apparent magnitude
m, again under the assumption that there are no evolutionary effects.
This is the classical number-magnitude relationship.

In the pre-1965 days of cosmology the central issue in cosmology
was the values of Hy and ¢gyg. Cosmology was simply ”a search for two
numbers”. Today, that view has changed. Cosmology is properly a
branch of physics and the values of these two parameters are regarded

2
) [+ (go— 1)z — aHy 2 +..] (26)
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simply as important parameters that observations will eventually de-
termine to characterize our Universe.

Unfortunately, the program of measuring the curvature of the Hub-
ble Law directly has not provided any strong constraints on ¢y. This is
largely because the curvature of the relationship is influenced by non
geometric effects (galaxy luminosities evolve with time in an unknown
way) and because there is considerable scatter in the magnitude-
redshift diagram. Indeed, the tendency today is to use the Hubble
diagram and the number-magnitude relationship together to deter-
mine the evolutionary history of galaxies! (See Guideroni and Rocca-
Volmerange, 1990; Rocca-Volmerange and Guideroni, 1990). As we
shall see below, there is a possibility that this will yield limits on g
and A as a by-product since faint galaxy counts are sensitive to €)g.

1.4.2 The classical approach again

In order to discriminate cosmological models, the magnitude redshift
relationship needs a large sample of redshifts out to at least z = 0.5
and preferably as far beyond z = 1 as possible. Loh and Spillar (1986)
have used a galaxy survey to determine approximate redshifts for ~
1000 galaxies out to a redshift of z ~ 1. On the basis of this sur-
vey, they look at the redshift-volume relationship and conclude that
2 =0.9=+0.3if A =0. Caditz and Petrosian (1989) argue that the
luminosity function history assumed by Loh and Spillar is not consis-
tent with their data. Taking this into account, Caditz and Petrosian
derive 2y =~ 0.2 with considerable uncertainty due to such things as
incompleteness of the sample. Yoshii and Takahara (1989) make a
detailed model for the luminosity evolution based on merger driven
evolution and discuss the problems associated with such methods of
getting at 2.

The number magnitude relationship provides an alternative probe
of cosmological models and galaxy evolution and has generated a great
deal of interest since we can now survey galaxies down to extremely
faint magnitudes in many wavebands. In recent years we have seen
faint galaxy counts by Tyson (1988) and by Jones et al. (1991) and
Metcalf et al. (1991). The latter surveys penetrate to B-magnitudes
B < 25. The interpretation of such counts and the galaxy evolu-
tion models that are used have been discussed by Koo (1990) and by
Guideroni and Rocca-Volmerange (1990). It seems that the present
data in the R and B bands can be largely understood in terms of cur-

16



rent models of galactic evolution. However, Cowie (1991) has recently
presented some infrared counts of galaxies which confuse the situation
somewhat by appearing to demand a non-zero cosmological constant!
This is also the conclusion of the analysis of counts by Fugikita et al.
(1990).

1.4.3 Cosmic Nucleosynthesis

Cosmic nucleosynthesis sets strong bounds on the amount of bary-
onic material in the Universe (Boesgard and Steigman, 1985; Pagel
1991a,b). Standard Big Bang nucleosynthesis implies that

0.011 < Qph? < 0.026, (27)

where Qp is the contribution of baryons to the total mass density.
(See chapter 4 of the Kolb and Turner (1990) book for an excellent
discussion of this). There is a need already here to have ten times
as much mass in the baryonic dark matter as is accounted by the
luminous mass in galaxies.

The nucleosynthesis question is fully discussed elsewhere in this
volume. There is a couple point that should be emphasised here. The
low baryonic density implied by nucleosynthesis causes a problem in
the hydrogen-helium cooling of the pregalactic gas: the density may
simply be too low. This is a point about star formation, but it does
have a bearing on what we observe on the largest scales since we can
only observe what is luminous.

1.4.4 €, from Hubble flow deviations

The large scale peculiar motions of galaxies are clearly related to the
density inhomogeneities, since it is those inhomogeneities that give rise
to the peculiar motions. €2 is involved in that relationship and so in
principle it could be estimated by comparing density excursions with
peculiar velocities. The problem arises because we cannot directly
observe the fluctuations in mass density, but only the fluctuations in
luminosity density. Another parameter relating mass density fluctu-
ations to luminosity density fluctuations comes into the game. This
parameter, b, is called the bias parameter and it might depend on the
location, the morphological type of the galaxies involved, or any num-
ber of other things. In this spirit of ignorance the simplest assumption
we can make is that b is a universal constant. Then we can in principle

17



determine the combination £yb~%/3. We shall have more to say about
this below (see sections 2.1.3 and 4.2.1).

On the assumption that light traces mass (b = 1), most dynami-
cal determinations of €y converge on 0.1 < Qy < 0.3 (Peebles, 1987;
Shanks et al., 1989). Stavely-Smith and Davies (1989) report £y =
0.08 £ 0.05. (The latter authors remark that some ‘biasing’ is de-
manded by their data, bringing Qg up to at least 0.25.)

More recently, deep redshift surveys of galaxy samples drawn from
the TRAS catalog have provided another route to €2y. The limits from
these surveys involve another parameter, b, the biasing parameter,
whose value is largely unknown (and may not even be a constant):

Qo

e ~ 1.0,

with large error bars. More will be said about this approach later on
(section 2.3.2).

1.5 Q =1, Dark Matter and Inflation

There is no compelling direct observational evidence for 29 = 1. The
driving force behind the notion that 29 = 1 is undoubtedly the infla-
tionary picture for the early universe (see the review of Brandenburger,
1990). Not only does this picture have appeal in providing answers to
some fundamental questions (like the horizon problem), but it seems
almost inevitable from the point of view of our present knowledge of
high energy physics. That weighs more strongly in favour of adopting
Qo = 1 than the lack of any obvious candidate particle weighs against
the notion.

1.5.1 Flatness and Inflation

It is interesting to write down and solve the equation for the evolution
of the density parameter Q(¢) with time (Ducloux, 1989). Suppose
the matter in the universe has density p and pressure p such that

3p —1, if p=—pc?;
+ ot
p=trS =0 g =0
P 1, if p= %pcfz.

The case p = 0,5 = 1/2 is relevant to the current epoch, while the
radiation gas case p = 1/3pc?, B = 1 is relevant to the early universe.
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The interesting very early universe case p = —pc? corresponds to

B=—1.

A not inconsiderable amount of work gives the evolution of €2 as
Q o 28Q%28(Q —1)8-1,

The simplest case § = 1 is relevant to the current era and the solution
is then trivial:

1
1+%(Qg‘

Q=

D=

—1)2

Thus in order to get Qg = 0.1 today, we need Qp = 1 — 1070 at
the Planck time tp ~ 107%0t,. It is the fact that © should have
been so incredibly close to 1.0 initially that is referred to as the ”fine
tuning” problem. The argument goes then that it was so close it
must (sic) have been exactly 1.000 ... . The alternative is to seek a
mechanism whereby such a value might be generated. The mechanism
is "inflation”.

In its simplest form the idea of inflation is as follows. If at an early
stage the universe had equation of state

pv = —pyc?,

the cosmic expansion would be exponential:

a o« ellvt

8w
Hy = ?G pv

The fact that the pressure py is negative is a consequence of the
physics of the vacuum at the high temperatures prevailing in the early
universe.

The exponential expansion phase is referred to as the ”de Sitter
phase” and would continue for as long as the material had this pe-
culiar equation of state. The universe then makes a transition to an
expansion for a "normal” equation of state. It turns out that during
this 7de Sitter” expansion phase, very distant parts of the universe
are causally connected. This is presumed to be an ”explanation” for
the flatness problem, the idea being that all anisotropies and inhomo-
geneities disappear during this phase of phenomenal expansion.
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The other side of the coin is that it is necessary to generate some
primordial inhomogeneities that will eventually give rise to the forma-
tion of galaxies and large scale structure. These must be generated
during or after the inflationary era and are generally thought to arise
out of quantum fluctuations in the vacuum state. In the simplest
models the spectrum of fluctuations is the Harrison-Zel’dovich spec-
trum with Gaussian distributed fluctuations (Guth and Pi, 1985). We
now appear to have evidence that this spectrum does not have enough
large scale power to explain the observations of large scale structure.
(See Kashlinsky and Jones (1991) for arguments that the spectrum is
not Harrison-Zel’dovich).

There is however no lack of alternate (albeit somewhat ad hoc)
model which allow us to get around the problem of the lack of large
scale power in the Harrison-Zel’dovich spectrum. One of the most
plausible ways around this is by generating non-Gaussian fluctuations.
Chaotic inflation (Linde, 1984 Linde and Mukhanov, 1987) can gener-
ate non-Gaussian fluctuation (Matarrese, Ortolan and Lucchin, 1989;
Yi, Vishniac and Mineshige, 1991). Strong claims have been made for
models involving ”global texture” as these also generate non-Gaussian
initial fluctuations (Spergel et al., 1991).

2 INHOMOGENEOUS UNIVERSE —
OBSERVATIONS

The inhomogeneity of the Universe has been a major aspect of cos-
mology over the last 25 years. We have learned a great deal, especially
from redshift surveys, and although things turn out to be fairly com-
plicated in the sense that the Universe is not simple a pile of clusters
distributed at random, nevertheless possesses some systematics upon
which we can build models. The structures we have seen on the largest
scales seem to be traced equally by galaxy samples drawn from quite
different catalogues: optical catalogues (de Lapparent et al., 1986,
1988), infrared catalogues (Babul and Postman, 1990) or even cata-
logues of dwarf galaxies (Thuan et al, 1991).

In this section, I review the observed character of the clustering
and the various attempts that have been made to quantify those vi-
sual impressions. Inevitably, much of the interpretation is predicated
on notions developed through theories so it is almost impossible to
discuss the observational data without reference to the theory! The
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theory comes in the following section. However, I shall try to provide
interpretations of the data that are largely model independent.

2.1 Preliminaries

Before discussing the data, we need a few basic notions such as corre-
lation functions, bias parameters and the like. This subsection intro-
duces these at a simple level, they are discussed in more detail later
on.

2.1.1 2-Point Correlation Functions

The two-point clustering correlation function has been the mainstay of
clustering studies for over fifteen years. Its importance in cosmology
has been fully discussed by Peebles (LSSU: 1980).

The 2-point correlation function as used in astrophysics describes
one way in which the actual distribution of galaxies deviates from a
simple Poisson distribution. There are other descriptors like three
point correlation functions, the topological genus and so on; we shall
come to those in more detail below (Section 3).

There are two sorts of 2-point function. One describing the clus-
tering as projected on the sky, thus describing the angular distribution
of galaxies in a typical galaxy catalogue. This is called the angular
2-point correlation function and is generally denoted by w(#). The
other describes the clustering in space and is called the spatial 2-point
correlation function. We frequently omit the word ”spatial”. The
(spatial) 2-point correlation function is generally denoted by &(r).

In order to provide a mathematical definition of the correlation
function we will only consider the spatial 2-point function, the defini-
tion of the angular function follows similarly.

Consider a given galaxy in a homogeneous Poisson-distributed
sample of galaxies, then the probability of finding another galaxy in a
small element of volume dV at a distance r would be § P = ndV, where
n is the mean number density of galaxies. If the sample is clustered
then the probability will be different and will be expressible as

§P = n[l + £(r)])oV, (28)

for some function £(r) satisfying the conditions

f(r) Z _]-7
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&(r) — 0, |r|]—0 (29)

The first condition is essential since probabilities are positive, and the
second is required in order that a mean density exist for the sample.

It is customary to make the assumption that the two point function
is isotropic: it depends only on the distance between two points and
not the direction of the line joining them:

§(r) = &(r).

This is a reasonable but untested hypothesis.

In practice, the correlation function is estimated simply by count-
ing the number of pairs within volumes around galaxies in the sample,
and comparing that with the number that would be expected on the
basis of a Poisson distributed sample having the same total population.
There are subtleties however due to the fact that galaxies lying near
the boundary of the sample volume have their neighbours censored by
the bounding volume.

One method discussed by Rivolo (1986) is to use the estimator

N;(r)
nVi(r)’

1
N

M=

L4+&(r) = (30)

i=1
where N is the total number of galaxies in the sample and n is their
number density. N;(r) is the number of galaxies lying in a shell of
thickness dr from the ith galaxy, and V;(r) is the volume of the shell
lying within the sample volume. (So N;(r) is being compared with
nV;(r), the Poisson-expected number lying in the shell). Note that 7 is
usually taken to be the sample mean, but if there is an alternative (and
better) way of estimating the mean density, the alternative should be
used.

An alternative strategy to calculating &(r) for a catalogue of N¢
galaxies is to put down Ng points at random in the survey volume and
compare the number of pairs of galaxies ng¢(r) having separation r
with the number of pairs nrg(r) consisting of a random point and a
galaxy, separated by the same

nga(r) N
nagr(r) Ng’

L4+&(r) = (31)

(Davies et al. 1988).
(As an aside it is worth commenting that some authors (eg. Pietronero,
1987) have advocated using a ”"structure function” for a distribution of
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N galaxies situated at points ri : I'(r) = N' Y n(r +r;). This is anal-
ogous to the correlation function, but has the claimed advantage that
it does not depend explicitly in its calculation on the mean density for
the sample. The value of the function is however strongly density de-
pendent, as can be seen for a Poisson distribution where £(r) = 0 and
['(r) = p. The idea is that one would be able to study the clustering
without the assumption that the universe is homogeneous. Given that
there is considerable evidence that the universe is indeed homogeneous
in the large, this may seem somewhat unnecessary.)

The two point correlation function for the distribution of galaxies
has a roughly power law behaviour on scales R < 10h~! Mpc., with a
slope of -1.77:

—1.77
£(r) = <1> 1 . r<10h ! Mpc., (32)

To

ro ~ 5h 1 Mpec.

This is frequently referred to as ”the 1.8 power law”. What happens
beyond 10h~! Mpc, is somewhat contentious. It certainly falls below
the power law behaviour, but it is not even clear whether it falls to
negative values at any scale where it is measurable. What is notable
is that the two-point correlation function is of negligible amplitude
on those scales (R ~ 20h~! Mpc.) where the structure revealed in
the redshift surveys (de Lapparent, Geller and Huchra, 1986) is most
dramatic. (If there were enough galaxies that we could determine the
values of £(r) on these scales, its precise shape would indeed contain
information about the large scale clustering. We are however con-
strained by sample discreteness.)

It should be remarked that the low amplitude of the two-point
function on these large scales is consistent with the fact that the uni-
verse, if smoothed over such scales, would show little structure. We see
the structure by virtue of what is happening on the small scales and
in particular how the small scale structures relate to one another. The
inadequacy of the 2-point function in describing what is seen on the
largest scales has motivated people to look at other ways of describing
the large scale structure.

The accuracy with which the two-point correlation function is de-
termined in redshift surveys has been questioned: Einasto, Klypin and
Saar (1986) argued that ry depended systematically on the depth of
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the sample, though this is probably a consequence of a bias introduced
by luminosity segregation (Martinez and Jones, 1990).

2.1.2 The Power Spectrum

Formally, the Power Spectrum of a distribution of points is defined as
the Fourier transform of the two-point correlation function:

= <%) 1/Qn/ooof(s) (sizfs) s%ds, (33)

where the last equality follows because £(r) = £(r) is direction inde-
pendent. (k = |k|). These relationships are formally invertible, so
given P(k) it is possible to get £(r).

So why introduce the power spectrum? The reason can be seen
from the following argument. Suppose that the density of galaxies in a
volume V is n(r), and that the mean of this is n (so the total number
of galaxies is nV').

Then the fluctuating density field n(r) —n can be decomposed into
Fourier plane waves:

n(r) —n= Z nelXT, (34)
k#0
where the sum extends over all wavenumbers than fit in the volume.
It can then be shown that

nV o |ngl?

Plk) = (35)

(2m)3/2 n?

and that (by Fourier transform relationship between P(k) and &(r)):

nel® s
&)=Y ﬁe*“”. (36)

k£0 n?
The distribution of the amplitudes of each Fourier component of the
fluctuating density field is determined by the physical processes that
generated the fluctuations in the first place. As long as the amplitudes
are small and linear theory applies, the evolution of these Fourier
components is independent and determined by the physical processes
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in the early universe. So decomposing the density field into a set of
Fourier components is useful. What the power spectrum then tells us
is the distribution of the mean square amplitudes of these components.
The power spectrum is the contribution of each Fourier mode to the
total variance of the density fluctuations.

The appearance of the |ny|? term is interesting. It tells us that
P(k) only contains information about the amplitudes of the Fourier
components of the fluctuating density field. P(k) contains no phase
information. Consequently, the 2-point correlation function does not
contain this information either. Many quite different distributions can
have the same power spectrum and correlation function. Consider the
example of a density field that is uniform on the faces of a cubic
lattice, and zero elsewhere. That can be written as a Fourier series
and the Fourier component have highly correlated phases. Randomize
the phases and the density distribution looks inhomogeneous and quite
disordered, yet the correlation function and power spectrum remain
unchanged.

2.1.3 Biasing

As a final technical point we should look at the concept of biasing that
comes in when one wishes to compare the distribution of matter (some
of which may be dark) with the distribution of luminous galaxies.
Light does not necessarily trace mass and so the clustering properties
of the light distribution may be quite different from the clustering
properties of the mass distribution.

The need to relate the mass and light distributions arises in two
situations. In the first place one may wish to make a comparison be-
tween the predictions of an N-body model for galaxy clustering with
the observed distribution. At present the N-body models simply de-
scribe the distribution of the gravitating matter and some hypothesis
is needed to say which material particles are luminous. Ideally, really
sophisticated N-body models would incorporate details of the star for-
mation process and make such a hypothesis unnecessary. In the second
place, we may simply wish to infer the mass distribution from the ob-
served light distribution in order to relate the observed velocity fields
to the matter distribution that generated them.

It would be bizarre indeed if the distributions of mass and light
were not related and the simplest hypothesis is that the fluctuations
in the mass distribution are proportional to the fluctuations in the
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luminosity distribution:

on

=p-L. (37)

Here n represents the mean density of galaxies (the luminous ma-
terial) and on the fluctuations in the galaxy density (which will be
position dependent). p represents the mean mass density and dp the
fluctuations in mass density.

This assumption is probably a considerable simplification of the
real physics, but we have to start somewhere. In fact, b is generally
chosen to be a constant, independent of position or scale, but possibly
dependent on the morphological type of galaxy that makes up the
luminous sample. This is forced on us because whereas all galaxies
seem to trace out the same large scale distribution, some are more
clustered than others. For example, the elliptical galaxies seem to be
more highly clustered than spirals (they occupy the denser regions of
the universe). So the bias parameter for ellipticals must be somewhat
larger than that for spirals.

The bias parameter plays a central role in relating the deviations
from pure Hubble flow (which are driven by the total matter distri-
bution) with measures of the clustering of galaxies (which depend on
where the luminous material happens to be). It can be shown (see
Peebles, LSSU equations (8.2) and (14.2)) that in linear theory the
relationship between the peculiar velocity field v and the fluctuating
gravitational force g is

2
V= 3H)0.4 8
where, by virtue of the perturbed Poisson equation, the fluctuating
force g is related to the distribution of relative density fluctuations

5(x) = bp/p:

(38)

x' —x ! 3!
g(X) = Ga(t)Qpc/ m (5(X ,t)d X, (39)

The mass density fluctuations dp/p are supposed to be related to the
fluctuations dn/n in the observed galaxy density via the bias param-
eter b defined above. So what we observe is

2 Q96 x' —x on(x)

- _* ¢
V=3, P

d>x' (40)

b Ix' —x|> n
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Note that there is a normalization factor /b to be fitted when relat-
ing the variations in the luminosity with the peculiar velocities. Note
also that decreasing b increases v, for a given luminosity distribution.

The upshot of this is that methods for determining Qg that com-
pare velocity fields with density fluctuations in fact only determine
Qob—®/3, and we need to get b from somewhere else (usually a theo-
retical prejudice based on an N-body model!).

Note that if we compare two different catalogues we can determine
Qob—®/3, for each catalogue. The ratio of these gives us the ratio of
the bias parameters for the two catalogues (Babul and Postman, 1990;
Lahav et al., 1990). At least we can reassure ourselves that different
galaxy catalogues have different bias parameters!

2.2 Projected Surveys

The first quantitative discussions of comic inhomogeneity came through
a study, mainly by Peebles and his collaborators (see LSSU), of vari-
ous catalogues of the positions of galaxies on the sky. The famous 1.8
power law behaviour of the correlation function was discovered from
the analysis of such catalogues, and the consistency of the results from
different catalogues was interpreted as strong evidence that the clus-
tering was indeed a cosmological effect (and not due to foreground
obscuration, for example) and that the clustering was homogeneous
as a function of the depth of the catalogue. Whereas the 1.8 power
law could be consistently identified, the break away from that law
on larger scales (the cutoff) was harder to identify with confidence.
In the analysis of the Lick survey Groth and Peebles (1977) found a
cutoff that corresponded rather closely with the angular scale of the
individual photographic plates and that lead to some skepticism about
exactly where the feature was (de Lapparent et al., 1989).

Recently, Maddox et al. (1990a,c) have created a catalogue of
some 2 million galaxies based on scans of the UK Schmidt J-survey
plates with the SERC Automatic Plate Measuring machine (APM).
The catalogue covers some 4300 square degrees and reaches to mag-
nitude J = 20.5. It effectively penetrates to a depth of some 600~ ="
Mpec. The two point correlation function for this catalogue (Maddox
et al., 1990b) shows results that are consistent with the Lick catalogue
results in the 1.8 power law regime, but the cutoff is quite different.
The cutoff is not at all as abrupt as the Lick catalogue analysis seems
to imply, and there is substantial power on very large scales. In fact
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there is so much power on these large scales that it is difficult to
reconcile the predictions of the standard cold dark matter numerical
simulations with the data.

2.3 Redshift Surveys

In the past years redshift surveys have played a very important role in
mapping out the structure of the universe. Today, the number of avail-
able galaxy redshifts numbers in the tens of thousands, though these
are divided among different galaxy catalogues often having rather dif-
ferent selection criteria. Some of these catalogues are based on opti-
cally selected galaxies, and then sometimes by limiting magnitude and
at other times by limiting angular diameter. Some catalogues select
disk galaxies, some select dwarfs and others select ellipticals. There
is an important database based on the IRAS satellite data where can-
didate galaxies are selected according to diverse spectral classification
criteria.

There is then the type of survey to consider: is it an all-sky survey,
or is it a sector of sky or a small but deep pencil beam? Pencil beams
go to great depths, but lack any transverse spatial resolution. The
whole sky surveys have good three dimensional discrimination, but
cannot go very deep.

2.3.1 Optical Galaxy Samples

Redshift surveys of galaxies involving thousands of galaxies do not
suffer from projection effects and so reveal more clearly the true large
scale structure of the universe. However, because the map is in red-
shift space, it suffers from artifacts such as the "finger of God” effect
in which clusters of galaxies appear as long fingers pointing radially
towards the observer. It is difficult to correct for these effects, so one
must be rather careful when interpreting the apparent structures.
The CfA redshift survey (de Lapparent, Geller and Huchra, 1986,
1988) was the first survey to reveal the structures that nowadays dom-
inate much of our thinking about the large scale structure. That sur-
vey, and the corresponding Southern Sky Redshift Survey (da Costa et
al., 1988), show the familiar filaments surrounding voids: the ”bubble-
like” texture of the galaxy distribution. These structures in the galaxy
distribution appear on scales where the galaxy-galaxy correlation func-
tion is negligible. (This is however not surprising. See the comment
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on this in section 3.1).

The original surveys have now been extended to other slices and
they conclude that the structures are essentially sheet-like, and that
the scale of the sheets is limited only by the scale of the survey.
The most remarkable feature is the so-called "great wall” (Geller and
Huchra, 1989) which appears to be a coherent sheet of galaxies ex-
tending over an area of at least 60h ! x 170h~! Mpc. Although the
appearance of the Geller-Huchra wall is enhanced by the selection
function for the sample, it is clear that such features appear in other
deep wide angle surveys such as the extension of the SSRS reported
by da Costa (1991). It is also apparent that the regular features being
detected in the deep pencil beam surveys (Broadhurst et al., 1990;
discussed below) are related to these walls. For a discussion of this
see Fong, Hale-Sutton and Shanks (1991).

Great Walls do not bound great voids, but seem to surround col-
lections of smaller voids that are themselves bounded by not-so-great
walls. It could be that the great walls are simply lesser features (not-
so-great walls) picked out and correlated by eye to build a larger
structures. In this case the enhancement by the observational selec-
tion function would be important in causing us to recognize the local
(Geller-Huchra) Great Wall. Looking at N-body models suggests this
kind of effect because it is easy for the brain to identify coherent struc-
tures on scales where there is no physical mechanism for generating
structure.

The Durham deep redshift sample (Metcalf et al., 1989; Hale-
sutton et al., 1989) is confined to a set of narrow solid angles in the sky.
The survey samples one galaxy in three down to magnitude J = 16.8
and contains 264 redshifts. Analysis of the data reveals a redshift
space correlation function having a scale length of 7h~! Mpc., beyond
which there is a steep break in the slope. There is persistent evidence
that the correlation function is not a power law, but has a feature
("shoulder”) on scales 2 — 5h~! Mpc., though this could be an effect
due to the fact that the data is seen in redshift space (Shanks et al.,
1989). There is also evidence that the correlation function goes neg-
ative around 20h~! Mpc., never becoming positive again. However,
this may simply be due to the fact that the survey areas appear not
to contain any notable galaxy clusters. Confirmation of such results is
only possible with very large redshift surveys, covering a substantial
solid angle of sky.

Klypin, Karachentsev and Lebedev (1990) have made a small sur-
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vey in a strip of sky 10’ x 63° that overlaps with the de Lapparent slice,
but goes twice as deep (mp < 17.6). The sample is small, 283 galaxies,
but large enough to be able to display the homogeneity of the universe
on the largest scales (an issue that had been raised on a number of
occasions (for example by Coleman, Pietronero and Sanders, 1988).
Again, as in the Durham survey, there is some evidence that the cor-
relation function goes negative on the largest scales.

2.3.2 Surveys based on the IRAS catalogue

Two important redshift surveys have been based on the IRAS cata-
logue: one is a complete redshift sample of all sources brighter than a
given flux (I shall refer to that simply as the "IRAS survey”) and the
other (called the ?QDOT” survey) is a sparse sample of redshifts in
which only 1 galaxy in 6 has its redshift taken. (QDOT is an acronym
for the participating institutions: Queen Mary and Westfield College,
Durham, Oxford and Toronto). The advantage of QDOT is that it
goes deeper than the IRAS survey, but because of the sparse sampling
it is shot-noise dominated at larger distances.

The IRAS galaxy catalogue does not include early type galaxies,
these do not have strong infrared fluxes, and the intrinsically brighter
IRAS galaxies tend to be starburst galaxies. This means that despite
the fact that the IRAS galaxies trace all known structures, the ob-
served populations do depend on the local density. It also means that
the more distant galaxies in the survey tend to be starburst galaxies
and so there may be a systematic and environment dependent bias as
a function of depth. Having said that, the sky coverage of the IRAS
galaxies is only obscured slightly by the galactic plane and this is a
considerable advantage, particularly in view of the fact that some of
the key structures in which we are interested seem to lie close to the
plane. Taking redshifts of objects in the galactic plane is, however,
more difficult, so redshift surveys still have to contend with galactic
absorption.

The QDOT data is described by Saunders et al. (1990) (though
much of analysis of the sample is presented in Rowan-Robinson et al.,
1990) and consists of some 2163 galaxies with 60um flux brighter than
0.6Jy. It samples the universe to a redshift of ~ 0.1 and provides useful
data out to a distance of some 200h~! Mpc. A number of papers have
appeared analyzing that data in various ways.

The luminosity function of the QDOT sample is given by Saunders
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et al. (1990) and this determines the selection function S(r) for the
sample. S(r) is the expected number of galaxies in the survey out
to a distance r on the assumption that the distribution was Poisson.
The pictures of Saunders et al. (1991) and the subsequent analysis
of Moore (1991) show that the survey contains all known structures.
Thus the QDOT survey does indeed map out the universe, despite
the fact that it is a sparse sample of a sparse sample. It should be
noted, however, that according to Saunders et al. (1990) the luminos-
ity function of the QDOT galaxies evolves with redshift as

(L, z) oc (1 +2)57, (41)

Their analysis argues that this is consistent with a luminosity evolu-
tion for the galaxies:

L, = Lexp %Q[l—(l—l—z)_?’/?], Q=32+1.0, (42)

but that there is no evidence for any change in the shape of the lu-
minosity function. The intrinsically brighter galaxies in the catalogue
are starburst galaxies and these are the ones seen at the greatest dis-
tances.

Efstathiou et al. (1990) and Saunders et al. (1991) look at the
counts in cells distribution and compare that with the predictions of
the CDM models.

Not surprisingly, they find that the variance of the counts cannot
be accommodated by standard CDM, but it should be remarked that
on those large scales where there appears to be a discrepancy there
may be problems arising out of the sparse sampling procedure (shot
noise). Rare but rich areas like the Hercules supercluster complex
could also bias the cell counts. Rowan-Robinson et al. (1990) have

used the convergence of the microwave background dipole to constrain
the value of Qg and find

Q

s = 07763, (43)
(see also Kaiser et al., 1991). If we believe g = 1 this can be read
as saying that the bias parameter is b = 1.23 4+ 0.23 for this sample
of galaxies. Interestingly, Rowan-Robinson et al. are able to account
for the peculiar motion of the local group, in both magnitude and
direction, entirely in terms of clusters that can be recognised in the
QDOT survey. They do not need to postulate any further unseen
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masses lying behind the galactic plane. The situation is not unlike
that found by Plionis and Valdarmini (1991) who account for the
dipole in terms of clusters of galaxies drawn from already existing
catalogues. I shall comment further on this in section 2.6.2.

The IRAS survey data is reported by Strauss, Davis, Yahil and
Huchra (1990) and consists of redshifts of 2649 IRAS galaxies brighter
than 1.9Jy. First results from this survey were discussed by Strauss
and Davis (1988) and by Yahil (1988) at the Vatican Study Week
(Rubin and Coyne, 1988). Work is in progress on a deeper survey
("IRAS2” for want of a better name) going to 1.2Jy (Fisher et al,
1991), the survey contains some 5300 galaxies having redshifts.

Babul and Postman (1990) compare the distribution of an incom-
plete redshift survey of IRAS galaxies with the CfA slice (de Lappar-
ent, Geller and Huchra, 1986, 1988). Correlation analysis suggests
that the bias parameter for the IRAS sample is a factor 1.6 down on
that for the CfA sample: bcya/brras ~ 1.6. Nevertheless the IRAS
galaxies do not appear to favour the voids any more than the CfA
survey galaxies. This would be easily explained if the IRAS galaxies
were merely a subset of the CfA galaxies.

Lahav, Nemiroff and Piran (1990) estimated the ratios of the bias
parameters for the IRAS catalog of galaxies and an optical catalog.
The two catalogs show different correlation lengths, which reflects the
lack of ellipticals in the IRAS catalog and is presumably due to a
different level of bias in the catalogs. The two catalogs also provide
different estimates for the density parameter .

2.3.3 Pencil Beam Surveys

Broadhurst et al. (1990) have combined four deep narrow-angle sur-
veys of galaxy redshifts that give a picture of the distribution to
2000h~! Mpc. The interesting outcome of this is an apparent reg-
ularity in the distribution of radial velocities on a scale ~ 120h~!
Mpec. The authors conclude that ‘it is difficult to understand how so
many features could maintain organized regularity over such a long
baseline’.

The result, if confirmed, is indeed surprising and points to a hith-
erto unsuspected order in the universe. It is not clear to what extent
various numerical models of the formation of large scale structure
could explain this. It has been claimed that cold dark matter models
do indeed show the effect (White et al., 1987; Park and Gott, 1990),
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but that is difficult to understand since we now know that the cold
dark matter model is in fact deficient in large scale power.

It is significant that the one model which does seem to explain this
observation is the Voronoi Clustering model (van de Weygaert, 1991).
In that model the galaxy clusters are taken as being located at the
vertices of a three-dimensional Voronoi tessellation, this provides the
normalization for the model and so the model has no free parame-
ters to juggle. The galaxies are then distributed on the faces of the
Voronoi polyhedra and ”observed” by drilling pencil-beams through
the resultant distribution. The pair separation histograms show as
much clustering as the Broadhurst et al. survey about one time in six.

It appears that pencil beams which start by going through the
center of a void and almost perpendicular to the next wall have a good
chance of going almost perpendicularly through the following wall.
The cells of the Voronoi tessellation are highly correlated. However,
many beams will intersect a wall at an angle such that the wall runs
along the line of sight for a large distance, in which case there will be
no periodicity observed.

What is lacking at the present moment is an objective series of
statistical tests that will quantify the statistical significance of the
pencil-beam data and objectively compare with model predictions.
The situation is so serious that Kaiser and Peacock (1991) have argued
that the apparent periodicity is not statistically significant and can
be reproduced by a model in which galaxies are placed in randomly
distributed clusters. Their argument is strong, but does not deny the
possibility that the regularity is nevertheless real.

2.4 Surveys with Independent Distance Esti-
mates

Having samples of galaxies for which there are distance estimates that
are independent of the Hubble law is of crucial importance. It is true
that such samples are necessarily considerably smaller than the red-
shift survey samples, numbering at most in the thousands of galaxies.
There are of course strong selection effects in creating such samples.
These arise out of the fact that properties of particular types of object
are exploited to give the distance estimator. Thus there are different
distance indicators for elliptical galaxies, for spiral galaxies in general,
and for particular classes of spiral galaxy. The distance errors are
generally very large (at least 20-30%) unless one focusses on a special
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type of galaxy of known luminosity (standard candles), and then there
are hidden dangers as exemplified by the original Rubin-Ford sample
of Scl galaxies (see section 2.4.1).

The analysis of such data sets is also non-trivial. One is tempted
to fit models of clusters with power law halos, but that specific model
fitting is fraught with dangers. What, for example, is the significance
of a result obtained through a model that does not in fact represent the
data? Bertschinger and Dekel have, in a series of important papers,
described a method for reconstructing the full three dimensional dis-
tribution of galaxies and their flow relative to the cosmic background.
Their technique, "POTENT”, makes a plausible assumption about
the nature of the velocity field that is being probed, and is potentially
capable of giving us a good smoothed picture of what is going on in
the Universe.

I shall discuss some data samples that have independent distance
estimators, and then go on to discuss the Bertschinger-Dekel tech-
nique.

2.4.1 The Rubin-Ford Effect

The pioneering work of Rubin et al. (1976a,b) used a sample of Scl
galaxies arguing that these were good ”standard candles” whose true
distances could be estimated from their apparent brightness alone.
Their catalogue of 18 galaxies was pruned to reduce various biases to
a sample of 96 objects having radial velocities in the range 3500 km
s~ to 6500 km s~!. On analyzing the distribution of ”true distance”
relative to Hubble flow distance they found substantial motion of the
Local Group of galaxies relative to their sample of distant Scl galaxies.

The Rubin et al. analysis yielded a Local Group mass center ve-
locity of Vrp = 454 £ 125 km s~' towards | = 163° and b = —11°
relative to the Scl sample. The Microwave Background Radiation
dipole anisotropy implies a motion of the mass center of the Local
Group of Viyyws = 610 £ 50 km s~! towards [ = 265° and b = 480°
relative to the cosmic frame (Smoot et al., 1991). These numbers take
account of the motion of the Sun relative to the mass center of the
Local Group V = 295 km s~ ! towards [ = 97° and b = —6°. The con-
clusion is thus that the Scl galaxy sample as a whole is moving with
velocity V' = 885 km s~ ! towards [ = 304° and b = 26° relative to
the frame of reference in which the microwave background radiation
is isotropic.
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The Rubin-Ford effect has been the subject of intense discussion
ever since it was reported (Fall and Jones, 1976; Rart and Davies,
1982; Collins, Joseph and Robertson,1986; James, Joseph and Collins,
1991). I still think that this particular data set is indeed biased in the
way described by Fall and Jones and the apparent large scale flow
implied by that data is spurious. This particular bias arises only in
samples of galaxies selected in a narrow range of absolute magnitudes,
such as Scl galaxies and so one should be careful before arguing that
such effects arise in other samples.

2.4.2 Samples of Elliptical Galaxies

For determining redshift independent distances to elliptical galaxies
one can use a Faber-Jackson (Faber and Jackson, 1976) type relation
between the isophotal diameter D, of the galaxy where the surface
brightness falls to some particular value and central velocity disper-
sion, op. The relationship, D, « o*/3 which was found by Dressler et
al. (1987) and Lynden-Bell et al. (1988) has been the subject of much
discussion (Djorgovski and Davies, 1987; Lucey and Carter, 1988; de
Carvalho and Djorgovski, 1989).

Lynden-Bell et al. (1988) (generally referred to as ”S7”) have
applied this distance indicator to a sample of ~ 400 elliptical galaxies
with the rms depth of 6,000 km s~' and find a large peculiar velocity
of 600 £ 100 km s~! on a scale of ~ 50h~! Mpc. The direction of this
velocity vector is towards the Hydra-Centaurus system. This direction
roughly coincides with the microwave background dipole direction, the
dipole determined from spiral galaxy samples and the optical light
dipole direction (Lahav, 1987). It also coincides roughly with the long
axis of the quadrupole component of the local velocity field (Lilje,
Yahil and Jones, 1986).

The discovery of bulk motions relative to the cosmic frame pro-
vided by the microwave background radiation, and of a coherent infall
towards the direction of the Hydra-Centaurus part of the sky is of
considerable importance. We discuss these in later sections.

A word of caution should be in order here: the new distance indica-
tor was established by using only elliptical galaxies in the Coma cluster
of galaxies. One knows, and generally expects, galaxy properties to
be influenced by their environments (tidal interactions, mergers, gas
removal etc. — see the review of Dressler (1984)). One cannot be sure
at this stage whether the (Dy, o relation applies equally to elliptical
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galaxies in other environments. Of the ~ 400 ellipticals in the S”
sample, a third are in rich clusters, a third in poor ones and a third in
the field. However the sample is not large enough to estimate the con-
tribution from these environmental effects or other likely evolutionary
effects (Djorgovski, de Carvalho and Han, 1988; Silk, 1989). Much
of the future discussion will turn around the quality of the distance
indicator for elliptical galaxies.

2.4.3 Samples of spiral galaxies

For disk galaxies there is the Tully-Fisher relationship (Tully and
Fisher, 1977) between the total luminosity and the asymptotic ro-
tational velocity width of the 21 cm. HI line. This has been applied
at a variety of wavelengths from the blue to the infrared (Aaronson et
al., 1986; Stavely-Smith and Davies, 1989).

These samples of spiral galaxies have been used for a variety of
purposes, though in general because of the inaccuracy of the distance
estimator the data is best smoothed over relatively large volumes.
(See Hesslbjerg-Christiansen (1991) for a potentially important way of
improving these distance estimates). They have been used to rederive
the motion of the local sample of galaxies relative to the microwave
background, and to determine the quadrupole distortion of that flow
(Lilje et al., 1986; Stavely-Smith and Davies, 1989). They have also
been used to map out the motions of galaxy clusters relative to one
another, since good estimates of distances to clusters can be obtained
by averaging distance estimates for a number of cluster members.

The relative motions of clusters of galaxies was studied by Aaron-
son et al. (1986, 1989) by determining redshift independent distances
to individiual member galaxies in some 11 clusters. They recovered a
large scale flow of the Local Supercluster towards the direction that
is now identified with the Great Attractor. What seems significant
about their result is that the Hubble flow deviations are relatively
small (~ 300 km s~ !) when measured from clusters of galaxies.

A recent detailed discussion by Lucey et al. (1991) using the el-
liptical galaxies in dusters (and the D, — o elliptical galaxy distance
indicator) confirms that the Hubble flow deviations for galaxy clusters
are generally small, but that there are a few outstanding cases where
there is an indication of substantial non-Hubble motion, particularly
the cluster A2634. However, the authors comment that tidal stripping
among galaxies in the central regions of this cluster may have been
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responsible for the apparent non-Hubble component of the flow.

2.4.4 The ”"Real” 3-Dimensional Distribution

Early studies of non-Hubble motions used fitted specific models for
the Great Attractor and its environment (Lynden-Bell et al. 1988).
While such models give an indication of what the Great Attractor is,
one is left with a very large parameter space of possible models none
of which has an a priori dynamical justification.

This model-fitting situation has been dramatically improved by
the recent discovery of Bertschinger and Dekel (1989) that one could,
on the basis of a few reasonable assumptions, reconstruct the entire
three dimensional velocity field given only the radial peculiar veloc-
ity data for a sample of galaxies. Moreover, the sample does not
have to be a complete sample (though where there are most galaxies
the reconstruction of the cosmic flow field is obviously most reliable).
Bertschinger, Dekel, Dressler and Faber (1991) in a recent series of
papers, have applied the technique to a compendium of redshift sam-
ples that allow the universe to be mapped out to a distance of 6000
km s L.

The actual argument describing how to do this is quite complex,
but it can be simplified for didactic purposes by taking a liberty with
the coordinate systems being used.

Given a galaxy with radial velocity cz and velocity independent
distance estimate r, the peculiar radial velocity is

Vi =cz — Hyr. (44)

If we suppose that V; is the radial component of a vector field V that
is the gradient of a potential ®, we can write

V = —V,d(x), (45)

and this has solution
(r) — B(0) = / V-dl,
(0]

where O represents the observer (us). The integral can be taken over
any path from O to r, and in particular a radial path. This particular
choice of path involves only the radial component of the velocity, which
we know. In r-space spherical polar coordinates (7,0, ¢):
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B(r) = /0 Vi 0, $)dr. (46)

We have set the potential equal to zero at the origin since we don’t
need its value, only its derivatives. Having got ® at all points we can
then determine the three-dimensional velocity field from it by doing

V = -V, (r). (47)

The projection of this velocity along the line of sight is the contribution
of the peculiar velocity to the observed recession velocity. Thus we
can improve our estimate of the true distance to the galaxy.

We seem to have got something for nothing! In fact it was not for
free. The price we had to pay was the assumption that the velocity
field was derivable from a potential. That is why the method is called
"potent”.

2.5 Clusters and Voids
2.5.1 Galaxy Clusters

Rich galaxy clusters are prominent features on sky survey plates, but
objects like the Coma cluster of galaxies are rather rare. According
to Bahcall and Soneira (1983) the density of richness R > 0 clusters
is npso = 7.5 x 1077 Mpc—3. Abell (1958) catalogued these, and that
catalogue has since been extended to the southern sky by Abell, Cor-
win and Olowin (1989). These clusters are selected in projection and
it is rather difficult to assess the selection effects that go into making
up such catalogues. Redshifts are now available for large numbers of
Abell clusters (see, for example, Huchra et al., 1990).

Searching for clusters in three dimensional redshift surveys of galax-
ies was initiated by Geller and Huchra (1983) and then refined by us-
ing N-body simulations by Nolthenius and White (1987) and by Moore
(1991). Such objective catalogues are very useful in a number of re-
spects, especially when looking at the group/cluster multiplicity or
luminosity function, or when calculating a cluster-cluster correlation
function.

Moore (1991) calculates the distribution of cluster luminosities
rather than the multiplicity function. The cluster luminosities can
be related to their masses through an assumed Mass to Light ratio,
and thence directly to theories for the origin of large scale structure.
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Moore’s main result is that the distribution of cluster luminosities
derived from the CfA catalogue is best fit by

F B
p(L)AL = ¢t [(%) " <L£T>

where F' = 1.16 &+ 0.07 is the faint end slope, B = 1.7 + 0.12 is the
bright end slope, and Ly is a characteristic luminosity corresponding to
absolute magnitude M; = —22.2 +0.2. The normalization is given by
¢+ = 3.0£0.5 x 10~% Mpc—3. At the end, a standard Schechter-Type
luminosity function would be far too steep.

Another interesting aspect of galaxy clusters is the distribution of
velocity dispersions. The Abell clusters show a rather flat distribution:
n o exp(—3Vigoo), where Viggo is the cluster velocity dispersion on
units of 1000 km s~!, showing the existence of a substantial number
of clusters with velocity dispersion in excess of 1000 km s~ ! (Frenk et
al, 1990). These authors suggested that the high velocity dispersions
could be due to contamination by nonmember galaxies or superposed
clusters. This is a claim that will only be resolved when we have a
ROSAT generated galaxy cluster catalogue. The groups identified by
Moore (1991) in the CfA catalogue have a much steeper distribution
of velocity dispersions n o< exp(—15Vi999). The two distributions are
equal around Viggo = 600 km s~!. Most of the groups found in the
CfA catalogue would not qualify as Abell clusters, they are not dense
enough. What is interesting is that the CDM predictions for a bias
parameter b = 2 — 2.5 produce reasonable agreement with the CfA
group data.

As a final comment on clusters of galaxies, it should be remarked
that the original de Lapparent slice contained an unusually large num-
ber of Abell clusters (A2162, A1267, A1185, A1213 and A617 besides
A1656, the Coma cluster). Thus the CfA slice is rather special in this
respect, especially in comparison with equivalent southern hemisphere
slices (da Costa, 1991).

-1
dL
Ly

2.5.2 The Cluster-Cluster Correlation Function

The cluster-cluster correlation function (Klypin and Kopylov, 1983;
Bahcall and Soneira, 1983; Bahcall, 1988a,b) is a power law falling
to unity on scales rg ~ 25h ! Mpc. and remaining positive beyond
50h~! Mpc. Taken at face value, this provides a strong argument
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against CDM models. Not only does CDM fail to predict such a large
correlation length, rg, the correlation length in CDM is depends only
on the shape of the power spectrum and not its amplitude and hence
the cluster-cluster correlation length is independent of the value of the
bias parameter. This last point makes it difficult to fix CDM without
saying the data has been wrongly interpreted.

Both Soltan (1988) and Sutherland (1988) have found evidence
for strong anisotropies in the correlation function of clusters looked
at in redshift space. They argued that projection effects enhance the
apparent richness of galaxy clusters and so conspire to boost ... The
real lengthscale according to these critics is ro ~ 14h~' Mpc. A simple
model for this was presented by Dekel et al. (1989a,b), though the
later study of the phenomenon by Sutherland and Efstathiou (1991)
shows that the reasons are not so simple.

The anisotropies reported by Soltan and by Sutherland amount to
peculiar velocities ~ 2000 km s~!. It is difficult to see how they could
be accounted for entirely by the relative motions of galaxies clusters
as supposed by Bahcall (1988) and her collaborators since Hubble flow
deviations as large as ~ 600 km s~! are rare (Lucey and Carter, 1988).

There appears to be a trend in the amplitude of the cluster-cluster
correlation function with cluster richness in the sense that the richest
clusters have the greatest correlation lengths (see for example Bahcall
and Soneira, 1983 and Bahcall, 1988). However, groups of galaxies
selected from the CfA catalogue (Nolthenius and White, 1987; Moore,
1991) have a correlation function that agrees in amplitude and slope
with the predictions of CDM. Given that the prediction of CDM is
independent of bias parameter, and that the group selection algorithm
seems to be quite effective (and objective), this must be regarded as
a plus point for CDM. The disease could well be in the Abell cluster
catalogue and we must await surveys based on the ROSAT satellite
to give an alternative rich galaxy cluster catalogue.

2.5.3 Voids

The Bootes void (Kirshner et al., 1981) with diameter ~ 60h~" Mpc
was the first void to attract attention. Originally it was thought to be
totally devoid of galaxies. Later observations did find some galaxies
there (Thuan et al., 1987; Dey et al., 1989), but the region is still well
underdense for its size. The latest count is 21 galaxies, of which 13 are
TRAS sources, in a region where one expects to find 33 to 40 galaxies
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(Dey et al., 1989) making the density contrast there —5/6 < § < —2/3
(an underdensity by a factor 3 to 6).

The de Lapparent slice and other redshift catalogues revealed voids
in abundance, giving the impression that the structure of the universe
is bubble-like and entirely dominated by the voids and their walls.
The bubble-like appearance may be an artifact of peculiar velocities
distorting the real map of galaxy distribution (Kaiser, 1988). However,
the velocities are unlikely to significantly reduce the (large) size of
typical voids which should be explained by any successful theory for
formation of the large-scale structure in the Universe. Nor are the
voids a consequence of extreme luminosity segregation (Dekel and Silk,
1986): the distribution of low surface brightness galaxies (Thuan et
al., 1987, 1991) and of IRAS galaxies (Babul and Postman, 1990)
follows that of bright ones.

Einasto, Einasto and Gramman (1989) have studied a compilation
of voids, and found that their mean radius is ~ 50h~" Mpc. However,
more recently, Kauffmann and Fairall (1991) applied a void finding al-
gorithm to various redshift catalogues and found that the distribution
of void diameters for their void catalogue peaked in the range 8-11
h~! Mpc., with a long tail in the distribution extending to voids the
size of the Bootes void or larger. It is not known whether these voids
are truly empty of material. Einasto et al. conclude, on the basis of
their numerical simulations (which included a cosmological constant),
that one third of the material in the universe could reside in the voids.
The void radii are sensitive to the bias level applied to the simulation,
so this may be a good way to fix the bias parameter b.

As a final comment, it should be noted that the distribution of rich
Abell clusters also reveals large voids. There are two unusually large
voids in the northern sky Abell catalogue (Bahcall and Soneira, 1983;
Huchra et al., 1990). This is interesting in relation to the Voronoi
clustering model for Abell clusters (van de Weygaert, 1991) which
purports to provide an explanation for the regularity in the redshift
distribution of galaxies in pencil beam surveys (Broadhurst et al.,
1990) since that model is normalized relative to the rich cluster distri-
bution. The voids in the Voronoi model are on average 1254~ ! Mpc.
across and these presumably correspond to the voids seen in the Abell
catalogue.

41



2.6 Great Attractors, Dipoles and all that
2.6.1 The Great Attractor and Others

Lynden-Bell et al. (1988) identified a large scale enhancement in the
distribution of galaxies as being a possible cause of the large scale Hub-
ble flow deviations discovered in the S7 survey of elliptical galaxies.
They dubbed this ”the Great Attractor”.

The remarkable flows in the direction of the Great Attractor, as
deduced from the elliptical galaxy survey, receive some support from
a survey of spirals for which distances have been determined using the
IR Tully-Fisher distance indicator (Aaronson et al., 1989).

The existence of this attractor had been guessed at already by
Lilje, Yahil and Jones (1986) who identified a quadrupole component
in the Virgocentric flow on the basis of the Aaronson et al. (1982) sur-
vey of the Virgocentric flow. The long axis of the quadrupole might
have been expected to point towards the center of the Virgo cluster,
but it was found to point in the direction of the Hydra-Centaurus
complex. The quadrupole has since been confirmed by the indepen-
dent data set of Stavely-Smith and Davies (1989). The importance of
the quadrupole component is that it is unambiguously gravitational in
origin. The quadrupole component of the force exerted by neighboring
masses falls if as 72 and so the quadrupole imposes constraints as to
where the mass causing the distortion of the flow is located.

The Great Attractor can be modelled by density distribution p o
r~2 centered about a point 3,500 km s~! away from us toward the Hy-
dra Centaurus region with the total mass of ~ 106M. The detailed
interpretation of the Local Group motion relative to the MWB is an-
alyzed by Lynden-Bell, Lahav and Burstein (1989). There are local
contributions to Local group motion as well as contributions from the
directions of Perseus and Hydra-Centaurus. See the discussion on the
"POTENT” method of reconstructing the cosmic density distribution
and peculiar velocity fields.

Because the attractor lies in the Galactic plane, it is difficult to
map. The search for the attractor lead other groups (Scaramella et
al., 1989; Lahav et al., 1989; Raychaudhuri, 1990) to the discovery of a
"super attractor” far beyond the Hydra-Centaurus system, (~ 140h~"
Mpc.) having about ten times the size of the proposed ‘Great Attrac-
tor”. This super attractor is a strong concentration of rich clusters
of galaxies. Its distance is, however, so great that it is unlikely to be
responsible for the tidal forces that lead to the quadrupole distortion
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of the Virgocentric flow.

The existence of a Great Attractor poses a number of problems
for theories of the origin of large scale structure. Bertschinger and
Juskiewicz (1988), for example show that the Great Attractor is a 7o
fluctuation in CDM models. Playing with the bias factor in CDM
models can solve the problem, but creates other problems. It seems
that only Peebles’ (1987) isocurvature baryonic models with Qg = 0.4
and a very flat power spectrum (n = —1) can solve the problem.

2.6.2 Dipole Convergence

The Local Group, and its surroundings are moving at what by cos-
mological standards is a high speed relative to the cosmic frame de-
fined by the microwave background radiation. Although Rubin, Ford
and collaborators (Rubin and Ford, 1976a,b; see section 2.4.1) had
reported a high velocity of the Local Group relative to a sample of
distant galaxies, the first unequivocal detection of the motion came
from the microwave background dipole anisotropy (Smoot, Gorenstein
and Muller, 1977; Lubin et al., 1983, 1985; Fixen et al, 1983). The
COBE satellite’s Differential Microwave Radiometers currently mea-
sures a dipole with an amplitude of 3.3+0.2 mK pointing in a direction
towards | = 265° £+ 2°,b = 48° £ 2° (Smoot et al, 1991).

What was surprising was that the motion inferred from the mi-
crowave background dipole did not point in the direction suggested by
Rubin et al. (1976a,b), and nor did it point in the ‘natural’ direction,
towards the Virgo Cluster of galaxies, our nearest significant mass
concentration. There was indeed a significant component towards the
Virgo cluster and this was viewed as a part of the general Virgocentric
Infall (Davis and Peebles, 1983). The source of the main component
of the motion was not apparent until the discovery by Lynden-Bell et
al. (1988) of a systemic motion of the Local Group towards what has
become known as the Great Attractor.

I shall discuss the nature of the Great Attractor elsewhere in these
lectures, all that should concern us here is the detection of the same
motion relative both to a sample of Elliptical Galaxies and relative
to the cosmic frame in which the microwave background radiation
is isotropic. That motion has been confirmed in many subsequent
surveys using different types of objects: spiral galaxies, Abell clusters,
optically selected galaxies, .... Note that it is not only the Local Group
that is moving, but at least the local neighbourhood, as is evidenced
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by the quietness of the local Hubble flow (Brown and Peebles, 1988).
Also, the fact that the long axis of the quadrupole distortion of the
flow of galaxies in the Virgo supercluster points in the same direction
is also of importance (Lilje et al., 1986; Stavely-Smith and Davies,
1989).

It is an important goal of cosmology to reconstruct the entire local
flow from the distribution of known material in the universe. The
question is where is the matter that is exerting this pull on the Local
Group and its environs? The answer of Lynden-Bell et al. (1988)
was the Great Attractor, a vast aggregation of galaxies largely hidden
from our view by the Galactic plane. The attempts to confirm this
hypothesis have met with some difficulty. We see for example the
claim of Rowan-Robinson et al. (1990) that the entire effect can be
explained in terms of known systems of galaxies, and that there is
no need to invoke any special unseen objects like the suggested Great
Attractor. There are also claims that there is a detectable influence on
the Local Group motion from distances far beyond the Great Attractor
(Plionis and Valdarmini, 1990).

The issue is referred to as dipole convergence. As the influence
of galaxies from ever larger shells is counted, the direction of motion
of the Local Group should converge in magnitude and direction to
the microwave back ground dipole direction. Several corrections have
to be made, the most important being a correction for the galaxies
and clusters that are hidden from sight because of the Galactic Plane.
There is another correction that has to be made: we measure the
microwave background anisotropy from the point of view of the Solar
System frame of reference whereas the dynamical forces act on the
Local Group mass center and on the Galaxy. A failure to achieve
convergence could mean one of several things. It could mean that the
light distribution does not trace the mass, it could mean that we have
not gone far enough in distance, or it could simply be that we do not
know the motion of the Sun relative to the mass center of the Local
Group.

If the distances to the galaxies are known, we can sum up the
contributions from shells of ever increasing size to the local force field.
Note that in order to fit the amplitude of the dipole, we must assume
a value of Qq/b°/3. The bias parameter b comes in because we look at
the fluctuations in the light distribution, not the mass distribution.

Light and gravity both fall of as R~2, and so, if light traces mass,
a dipole in the gravitational force field should show up as a dipole
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in the light distribution. Thus for a sample of objects drawn from
a catalogue, we can deduce the contributions of various parts of the
Universe to the local force simply by examining the distribution of
the light and making the necessary assumption that light traces mass.
This has been done for virtually every available catalogue of galax-
ies: spiral galaxy samples, elliptical galaxy samples, the IRAS-based
samples and for samples of galaxy clusters.

Lahav (1988) summed up the light in diameter limited subsam-
ples of a catalog of optically identified galaxies as a function of limit-
ing optical diameter He found a light dipole in roughly the expected
place, though he found convergence in direction was achieved at a
relatively nearby distance. An enhancement in the galaxy density in
the direction of the Great Attractor is clearly seen in his plots of the
distribution of galaxies on the sky. This has also been done for the
IRAS survey (Strauss et al., 1988; Yahil, 1988), and for the QDOT
survey (Rowan-Robinson et al., 1990), and it is clear that convergence
in direction is being achieved, though the dipole direction does move
around on the sky quite a lot data from ever large shell is considered.

Plionis and Valdarmini (1991) study the dipole contribution from
all galaxy clusters in the Abell-ACO catalogues having their 10"
brightest galaxy brighter than in mjy = 16.4. The catalogue is 80%
redshift complete. They calculate the dipole moment of the light dis-
tribution from the clusters as a function of depth in their catalogue,
using the population of each cluster as an estimator of the total clus-
ter light. In order to calculate the acceleration due to a given cluster,
they rescale the light cluster light to a mass in such a way that they
get the correct answer for the Coma cluster mass. Most of the effect
comes, as expected, from a volume of radius » < 50h~! Mpc., but
there still appears to be a substantial contribution from the Shap-
ley concentration of galaxy clusters and clusters in general out to the
limit of their survey. What is perhaps surprising about this result is
that the clusters should trace the mass distribution so well. Ounly a
few percent of all galaxies are in such clusters and it would have been
quite conceivable that the contribution to the local gravitational field
from the clusters would be swamped by the contributions from all the
other galaxies.

Recall the discussion of the QDOT survey and the fact that Rowan-
Robinson et al. (1990) were able to obtain satisfactory dipole conver-
gence using only clusters that had been identified in the QDOT survey.
There was no need for ‘extra’ mass hidden behind the Galactic plane.
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Rowan-Robinson et al. refer to highly extended (and overlapping)
cluster halos which have power law density distributions (p oc 1)
extending out to 30h~ Mpc. Only 1.5% of the cluster mass lies within
the Abell radius! It is presumably these overlapping halos that the
POTENT recounstruction is finding and labelling the Great Attractor
with a density contrast of around 0.7.

The outstanding question is at what distance is convergence in
direction achieved? The amplitude of the velocity can be fixed by
selecting a mass to light ratio for the objects in the sample, and that
is equivalent to fixing the parameter €2y/b%% with a bias parameter, b,
appropriate for the sample. There are several aspects to this question.
Firstly there is the question of the statistical significance of the inferred
direction and the value of the velocity. There is then the question as
to whether such an amplitude is expected in a given theory and the
confidence with which we can determine 2y and b.

Several people (Kaiser and Lahav, 1089; Juskiewicz, Vittorio and
Wiyse, 1990; Lahav, Kaiser and Hoffman, 1989) have constructed mod-
els for Local Group peculiar velocity, vg, in Cold Dark Matter and
Baryonic Dark Matter models. The data from the IRAS and ellip-
tical galaxy surveys out to 10,000 km s~! cannot tell the difference
between these models with any confidence. Another approach (Regos
and Szalay, 1989) is to use multipole expansions of the observed ra-
dial velocities in shells to shed light on the uncertainties in deriving
the bulk velocity vector. It seems that distinguishing between what
observers measure and what theorists talk about is a large part of the
problem.

It would be important if there were a difference between the true
peculiar velocity of the Local Group, v as inferred from the MWB
dipole and the estimate vy (as inferred from the volume averaged
motion in a sample of galaxies (Vittorio and Juskiewicz, 1987)). One
of the uncertainties in converting the motion of the Solar System rel-
ative to the microwave background to the motion of the mass center
of the Local Group relative to the cosmic frame is the unknown dy-
namics of our Galaxy relative to the Local Group mass center. There
is even a contribution from the rotation of the Local Group which is
only poorly determined (Moore, 1991).
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2.6.3 Large Scale Flows and CBR Anisotropy

It is an important question as to whether these non-Hubble motions
arose from density fluctuations that were consistent with observed
limits on the anisotropy of the microwave background radiation tem-
perature. The anisotropy on such scales results simply from the Sachs-
Wolfe effect.

Juskiewicz, Gorski and Silk (1987) and Martinez-Gonzalez and
Sanz (1989) calculate the minimal microwave background anisotropy
associated with a given streaming motion. By ‘minimal’ what is meant
is that the density fluctuation spectrum is chosen so as to minimize
the observed temperature fluctuations, subject to the constraint that
they can also produce the velocity field. Although it is a near thing,
no microwave background anisotropy experiments are yet in conflict
with the observed non-Hubble motions.

Of course, it might be that the actual spectrum gives an observable
temperature fluctuation. Doroshkevich and Klypin (1988) used the
Zeldovich approximation to describe the evolution of velocity correla-
tions on very large scales, and they also calculated the expected tem-
perature anisotropies for the purposes of comparison with the RELICT
experiment. They argued in favour of needing a feature in the spec-
trum of fluctuations on scale of 50-100 A~ Mpc.

2.7 Velocity Correlations

There has been much discussion on the use of the velocity correlation
function (Peebles, 1987; Kaiser, 1988):

9(1].2
T on?

&) = () vO) = 5o [ P (kr)ak. (49

It is on the basis of this function calculated for the S” sample that
Groth, Juskiewicz and Ostriker (1989) argue that the observed velocity
field is far more correlated than would be expected on the basis of the
CDM model, particularly at large separations.

However, Gorski et al. (1989) have made an improvement on this
and show how to calculate velocity correlations from observable quan-
tities. They split the velocity correlation tensor into ”parallel” and
"transverse” components. They show, on the basis of comparison with
cosmological N-body simulations, that the scalar version of this by
Groth et al. (1989) may give misleading results. The Aaronson et al.
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and IRAS samples show velocity correlations over scales of 1500 h~"
Mpc. The Burstein et al. elliptical galaxy sample shows the same cor-
relation length scale, but with a considerably greater amplitude. (The
elliptical galaxy sample correlations are very sensitive to the velocities
of a small number of galaxies in the sample). The correlations in the
Aaronson et al. (1982) and IRAS samples are not unusual for CDM
models with a bias parameter b = 2 or less, but the CDM models can-
not reproduce amplitude of the elliptical galaxy sample. The Peebles
baryonic model with isocurvature fluctuation automatically generates
long range correlations, but even then cannot come to terms with the
S7 elliptical sample.

3 CLUSTERING MEASURES

3.1 Two-Point Correlation Functions

I have reviewed the two-point correlation function £(r) earlier (section
2.1 The point to recall here is that the large scale structure, on scales in
excess of 20h~! Mpc., is not described by measurements of £(r). There
is too much noise on these scales to even say whether £(r) is positive or
negative. It is also worth recalling that despite what our eyes tell us,
the structure on these scales is indeed linear and of small amplitude.
That can be seen by smoothing the galaxy distribution with a sphere
of this scale or greater. We know in fact that the variance of the
optical galaxy counts averaged over spheres of 82~ Mpec. (ie. 800 km
s~1) is unity, and this fact provides us with one basis for normalizing
N-body experiments (given a bias parameter).

So why do we see all that impressive structure? The reason is that
we are looking at the combined effects of large amplitude fluctuations
on small scales that are correlated (albeit weakly) on large scales.
The walls that define the voids are seen by virtue of their small scale
structure (without which they would not look like walls!) and they
look like walls or filaments because of the way they are organised on
the larger scales. If we could measure the two point function reliably
on the large scales we would see evidence of this.

So there is some motivation to look for clustering descriptors that
quantify what our eyes tell us: that there is organised large scale struc-
ture. Note that because the structures we are seeking to quantify are
linear, they may have no special dynamical significance. The Great
Wall did not arise because sphere of that size collapsed to make a pan-
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cake! Not only is that dynamically unreasonable, it would also conflict
with the isotropy of the microwave background radiation. Similarly,
the fact that we see a great void does not imply that some region
exploded from a small volume to form that space and its surrounding
walls. Making that assumption would again lead to a problem with
the isotropy of the microwave background (Barrow and Coles, 1990).

3.2 Higher Order Correlation Functions

Since the two point function alone does not describe the large scale
structure, the idea is that the higher functions may fill in the gap.
The three- and four- point functions have been extensively discussed
and measurements of these functions has given rise to the idea that all
high order correlation functions are sums of multiples of the two point
function. The three point function for example (Peebles and Groth,
1975; LSSU) can be written as

G2z =~ Q(&1&12 + &12823 + £23831)
Q ~ 1, for r<2h!Mpc (49)

In this notation 1,2,3 denote the positions of the members of triples
of galaxies. ((123) is to be thought of as a function of triangles of
various specific kinds specified by the lengths of their sides (12), (23),
(31). Then the scaling of ¢ can be verified for all similar triangles of
a given type, specified only by their size. Or it can be verified for all
triangles in which two sides are the same as a function of the length
of the third side.

It is worth noting the absence of a term proportional to £12€25831.
The argument is that this term would dominate as » — 0 and we do
not see that happening on the scales where the three point function
has been determined.

The 3-point function plays a role in the Cosmic Virial Theorem
which relates the mean square peculiar velocity (v3(r)) on scale r to
the clustering as measured by the 3-point function (LSSU section 75,
Peebles (1980)):

_ 6GQ dr
(v3,(r)) = () 0P¢ / / 3 C(ryz, |r — z|d>2. (50)

This uses the (unverified) assumption that the distribution of vo; is
isotropic. The bias parameter b comes in because the Cosmic Virial
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Theorem involves the correlation functions of the mass distribution,
and these are estimated from the distribution of light. Using a model
for the 2-point function

v
£(r) = (T—°> , y=18, ry=4.1h"! Mpec.

7

and the relation between the 3-point and 2-point functions, we get

(v31(r)) = C,Qb Qo HGr 77, (51)

where C, is a constant depending on <. In this equation, the only
unknown quantity is €.

Q has been determined for the Durham/AAT/SAAO redshift sur-
veys (Hale-Sutton et al., 1989) to have the value

Q Durham = 0.58 % 0.05, (52)

from data on scales r < 1 Mpc. This is somewhat lower than the value
@ = 1.31+0.2 from the analysis of projected data by Groth and Peebles
(1977). With this value of ) and the velocity dispersions measured
from their survey they find

QoDurham
b2

again using fits for » < 1 Mpc. The error bar seems somewhat conser-
vative since the variation of y determinations from the subsamples
that make up the Durham/AAT/SAAO survey is quite considerable.
The value is nonetheless on the low side if one is aiming at ¢ = 1.
The value only reflects the clustered mass on scales < 1 Mpc., and
there is some freedom in choosing the bias parameter.

Coles and Jones (1991) point out that @ may not be the best
quantity to measure departures from Gaussian behaviour, particularly
on scales where correlations are weak. They suggest instead the direct
measure of the skewness:

=0.18 4 0.09, (53)

r- H g (54)

For a Gaussian random distribution of galaxies, I' will be zero. In
general, I' will depend on scale and the shape of triangles used to
measure (.

20



Even higher order correlation functions can be used to measure the
clustering (Sharp, Bonometto and Lucchin, 1984), but despite clever
tricks they are difficult to measure (Szapudi, Szalay, and Bascan, 1991)
and lack any intuitive appeal. (See also Jones and Coles (1991) for
more comments on the 4-point correlation function and its relationship
to the kurtosis of the underlying distribution).

3.3 Counts in cells

The counts of galaxies in cells are related to the correlation functions
of all orders and potentially provide an important means of testing for
the presence of voids in a sample of galaxies. The relationship between
the probability Py (V') of finding N galaxies in a sample volume V' and
the correlation functions of all orders was given by White (1979). The
particular case Py(V) is called the Void Probability Function, ‘VPF’
for short, and is thought to be a sensitive discriminator of clustering
models.

The probability that a volume V', randomly selected in a sample of
points having mean number density ng, will contain no galaxies was

first given by White (1979)

Py(Ving) = e V. (55)

Py depends on the mean density of the sample, and in fact it can
only depend on the product ngV. The scale a is given in terms of the
correlation functions of the distribution:

a=1+> (—ng)! /gidv1 dVi. (56)
=1

Here &; is the i-point correlation function of (i — 1) coordinates and is
determined on linear scales by (among other things) the power spec-
trum of the primordial density fluctuations. For purely Gaussian fluc-
tuations the sum in a is cut off beyond the second term, but as we
discussed in the section on correlation function, gravitational evolution
destroys the Gaussian character of fluctuations. If we wish to com-
pute Py(V) in a general case we are forced to make an ansatz about
the relationship between second and higher order correlation func-
tions either through BBGKY hierarchies or by intelligent guesswork
(Schaeffer, 1985; Fry 1986). The data can then be used to test this hy-
pothesis. The VPF was first studied observationally by Maurogordato
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and Lachieze-Rey (1987) who were able to confirm the Schaeffer scal-
ing relations. The recent article by Einasto et al. (1991) provides a
clear exposition of what the Void probability function actually mea-
sures. Cappi, Maurogodato and Lachieze-Rey (1991) have confirmed
that the VPF of the distribution of rich galaxy clusters shows scaling
behaviour up to a scale of 50 h~! Mpc,.

Py(V;ng) should be distinguished carefully from the probability of
finding a void of the kind that has been identified as a feature of the
large scale galaxy surveys. The VPF describes the probability that a
randomly placed sphere of a given volume V contains a given number
of galaxies — not the probability of finding a region of volume V' which
is devoid of galaxies.

The probability of finding N galaxies in a randomly selected vol-
ume V, Py (V) has been discussed in terms of quite general scaling
hypotheses by Balian and Schaeffer (1989a,b). Balian and Schaeffer
were able to compute the properties of the counts-in-cells distribution
Pn (V') on the hypothesis that the higher order correlation functions
are related to the two-point correlation function through rather gen-
eral scaling hierarchies. The CfA survey data appears to support both
the form of Py (V) and the Balian-Schaeffer scaling hypothesis (Mau-
rogordato and Lachieze-Rey, 1987; Alimi, Blanchard and Schaeffer,
1990). There is an extensive analysis of galaxy counts in cells by Fry
et al. (1989).

An alternative approach to the counts in cells distribution was
taken by Saslaw and Hamilton (1984) who argued that

Py(V) = [(1=B)ngV + BN|N-le=(1=AnoV=pN
B = 0.70 £ 0.05. (57)

The value of the constant 8 (called b by Saslaw and Hamilton, but
we wish to avoid confusion with the bias parameter) is from Crane
and Saslaw’s (1986) analysis of the Zwicky catalogue of galaxies. The
parameter [ is interpreted physically by Saslaw and Hamilton as being
the ratio § = —W/2K of the gravitational correlation energy, W, to
the kinetic energy in peculiar motions,K. In fact, # could depend on
scale and will certainly depend on time. This distribution function is
discussed at length in Itoh et al. (1990a,b).

What is interesting is that this distribution function fits N-body
models rather well (Suto, Itoh and Inagaki 1988, 1990), provided that
/8 depends on scale as 1 — 8(r) o< 7~3=7)/2 y = 1.8 being the slope of
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the two-point correlation function. Itoh (1990) has an interesting dis-
cussion of the relationship between the Saslaw-Hamilton distribution
function and the fractal dimensions D, of a set having this distribu-
tion function, though he somehow ends up with a set whose Hausdorff
dimension Dy is smaller than the correlation dimension Ds.

3.4 Genus

A promising way of classifying the structure of the universe is to see
how the topology of the surfaces of constant density in the universe
varies with the value of the density (Gott, Melott and Dickinson, 1986;
Weinberg, Gott and Melott, 1987). The topological genus of the set
of points enclosed by surfaces of constant density is defined as the
number of holes minus the number of isolated regions (though this is
not how it is calculated). Thus a toroidal region has a genus of -1 and
an isolated sphere has a genus of 0. The genus signature of the dis-
tribution is calculated as a function of the density threshold at which
the surfaces are defined. Several authors, starting with Doroshkevich
(1970) calculated the genus signature for a windowed Gaussian ran-
dom deunsity field as a function of the threshold v defining the surfaces:

G, ox (1 - 1/2)671/2/2. (58)

v is measured in terms of the variance of the field seen through the se-
lected window. The constant of proportionality depends on the power
spectrum of the windowed density distribution. If the distribution is
non-Gaussian, this would show up in the genus signature.

This has been discussed at length in two recent papers Gott et al.
(1989) and Melott et al. (1989). The main technical problem is that
of relating the observed two dimensional sections of three dimensional
data to the three dimensional situation. In the data paper (Gott et al,
1989), catalogues of all kinds of objects ranging from dwarf galaxies to
Abell clusters are used. It is found that the universe is ”sponge-like”
on largest scales, with no evidence for a bubble-like structure which,
it is claimed, could have been detected if present. There are voids,
but they are interconnected, as opposed to being surrounded on all
sides by galaxies. On smaller scales, the topology has a tendency to
become "meatball-like”.

Moore (1991) has looked at the QDOT redshift survey, smoothed
over a variety of windows. The genus signature is clear on scales of
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20h~! Mpc. and 40h~! Mpec. and is consistent with a Gaussian distri-
bution of density fluctuations taken from a power law power spectrum
with spectral index n = —0.79 4+ 0.35 on those scales. This appears to
be a variance with the general hypothesis that the spectrum has the
Harrison-Zel’dovich form on such scales, and in particular with the
standard CDM models.

3.5 Multi-Fractals

The power-law nature of the two-point and higher order correlation
functions on small scales is suggestive of some kind of scaling be-
haviour, at least in the range of scales where the power law is observed.
The simplest structure that has such scaling properties is the simple
fractal, first studied in this context by Efstathiou, Fall and Hogan
(1979). Martinez and Jones (1990) have since shown that even in this
apparent scaling regime, the distribution of galaxies is significantly
more complex.

If the structure is not that of a simple fractal, what might it be?
Jones et al (1988) have suggested that it may be Multifractal — that is,
a distribution which over a certain range of scales can be characterized
by a set of dimensions rather than just one dimension. There is scaling,
albeit of a rather complex kind.

The multifractal description of the clustering process goes beyond
the two-point correlation function, encapsulating all high order corre-
lation functions in one function, D,. The power of the technique has
been demonstrated by Martinez et al. (1990) who examine the scaling
structure of a number of well known clustering models and provide a
variety of algorithms for calculating the dimensionality function D,.
The simplest of these is from the formulae for what is in fact the Renyi
dimensions of the point set:

N(r)(,
D, = lim L1082 (E/N)T (g

r—0qg—1 log r

Dy =1limD =1.
1 ql~>ni q» q
Here, n;(r) is the count of particles in the ith cell of size r, and N is
the total number of particles in all cells. There is a technical problem
involved in taking the limit in a discrete sample as the cell size goes
to 0.

o4



In practise, box counting methods of determining dimensions are
rather inefficient and tend to be dominated by shot noise. Van de
Weygaert, Jones and Martinez (1991) have shown how to use the
minimal spanning tree construct to calculate these dimensions with
considerably fewer points than would be required by standard box
counting methods.

The function Dy is related to the moment generating function,
myq(r) of the clustering distribution. The relationship is

1dlogmg(r

Dy = lim adngj(). (60)
Hence each D, encapsulates the information contained in the statis-
tical moments of the distribution of the point set. The fact that in
general one can in principle translate between the moments and the
dimensions means that they contain the same information, though the
information is presented in a different way. It is arguable that D — ¢
has a more immediate physical appeal.

The simplest application of the method is to compare the Hausdorf
dimension, Dy, with the Correlation Dimension, Dy. Applying this to
the ZCAT redshift catalogue gives values

Dy = 2140.1
Dy = 1.240.1. (61)

This leads to the strong conclusion that the universe is not a simple
fractal characterized by one dimension. The value of Dy indicates
that the characteristic structures are sheet-like rather than filament-
like. The value of Dy is just 3 — v where 7 = 1.8 is the slope of the
two-point correlation function.

4 THEINHOMOGENEOUS UNIVERSE
— THEORY

4.1 The Origin of the Fluctuation Spectrum

We do not yet have an adequate understanding for the origin of the
power spectrum of Primordial Density Fluctuations. Therefore it is
usually assumed that primordial density fluctuations with an initial
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power spectrum P(k) o k™ were present at some initial time ¢; ei-
ther as part of the initial conditions of the Universe or having formed
through some causal process which presumably would specify n and/or
their amplitude. The case n = +1 is generally referred to as the
Harrison-Zeldovich spectrum, after the individuals who advocate its
use on the grounds that this was the power spectrum that did the
least violence to the geometry of spacetime on any scale.

The ”natural” Harrison-Zeldovich spectrum of fluctuations may
not be so natural. In inflationary cosmologies the emergent spectrum
of fluctuations depends on the details of the fields that cause the infla-
tion (Kofman and Linde, 1987; Kofman and Pogosyan, 1988; Kofman
and Blumenthal, 1989; Matarrese, Ortolan and Lucchin, 1989; Hodges,
Blumenthal, Kofman and Primack, 1990; Salopek and Bond, 1991).
These papers discuss specific models for the generation of power law
spectra, spectra that are non-Gaussian and even non-power law spec-
tra. The non-power law spectra are of interest partly because we see
here a direct influence of the parameters of microscopic physics on
large scale cosmic structure.

The issue is very contentious. For example, the Kofman and Linde
(1987) idea that inflation driven by multiple scalar fields might create
non-Gaussian fluctuations has been disputed by Hodges (1989). (See
also Hodges and Blumenthal, 1990) In an analytically solvable case
Barrow and Coles (1990) find that although non-Gaussian fluctuations
can be generated, they become Gaussian as a state of exponential
expansion is attained. Nevertheless, power law spectra with index
different than 1 (Harrison-Zeldovich) can be created.

Peebles (1989) discusses the origin of isocurvature fluctuations in
the inflationary scenarios. The question of the origin of isothermal per-
turbations as a consequence of the baryongenesis process at very early
epochs is discussed by Barrow, Copeland, Kolb and Liddle (1991).

4.2 Modelling the Evolution of Large Scale
Structure

4.2.1 CDM models

The most extensively studied spectrum of primordial density fluctua-
tions is the one arising from the ” Cold Dark Matter” theory in which
the mass density of the universe is made up to €@ = 1 by massive
weakly interacting particles such as axions. The spectrum at recombi-
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nation is entirely determined by the initial spectrum (generally taken
to be Harrison-Zeldovich) and the physical processes that occur in the
pre-recombination fireball. The bulk of the work on this model has
been done numerically and is described in a series of papers by Davis,
Efstathiou, Frenk and White (Efstathiou et al., 1985; Davis et al.,
1985; White et al., 1987; Davis and Efstathiou, 1988).

Apart from the initial amplitude of the spectrum, which determines
the epoch of galaxy formation, the theory is entirely fixed and has no
free parameters as far as the dynamics is concerned. However, when it
comes to relating mass and light distributions it is found necessary to
introduce a bias parameter, b, defined in terms of the density contrasts
of the distribution of matter and luminosity by

() = (5)
p galazies p matter.

b enters into the normalization of the model. This universe has 29 =1
and models are normalized so that the rms light fluctuation in a sphere
of radius 800 km s~! is unity. Hence the normalization of the mass
fluctuations in 800 km s~! spheres is just b".

(This normalization is not the only possibility. It is possible to
choose the scale where the two-point correlation function drops to
unity to be 5h~! Mpc, or to normalize through the function J3(r) =
[ 72£(r)dr whose (somewhat uncertain) value is estimated to be J3(10h~! Mpc) =
277h 3 Mpc? and J3(30h ' Mpc) ~ 800h ! Mpc? (Davis and Peebles,
1983).)

There have been many theoretical discussions of the value of b
(see Dekel and Rees, 1987, for a review), but there are no reliable
methods of estimating what its value should be. At present b has to
be inferred from the observations. Braun, Dekel and Shapiro (1988)
looked into various biasing mechanisms and showed that it is possible
to get galaxy formation to start at z ~ 3 and have a galaxy-galaxy
correlation function with the correct slope today. (Though there was
then a problem with the correlation length scale).

The value b = 2.5 is motivated by the N-body models Davis et
al. (1985). However, b = 2.5 appears to be inconsistent with the ob-
served streaming motions (Bertschinger and Juskiewicz, 1988; Gérski,
1988). Kaiser (1988), for example, prefers b = 1.5. Peebles, Daly
and Juskiewicz (1989) review this question in detail, looking at the
consequences of various choices for b and for the lengthscale for mass
clustering, rg. They argue, for example, that b = 1.5 is too low to
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be consistent with the pairwise galaxy velocity correlation if b = 1.5
and ro = 7Th~! Mpc. Lowering rq to 4 h~' Mpc creates problems with
cluster velocity dispersions (Evrard, 1989).

One way around these problems may be to introduce non-Gaussian
initial conditions. Several numerical simulations have been done on
these lines by Messina et al. (1990), using negative binomial and
lognormal distributions.

The extra degree of freedom provided by the skewness of the initial
distribution is of course beneficial and in particular the structures
that are formed are well organised into filamentary structures. These
simulations look highly promising.

So is the standard CDM model dead? It certainly has problems
but source of the problems is easy to identify: the rather naive notion
of biasing. It is conceivable that a better model of galaxy formation
which automatically dealt with the biasing that has been put in to
model the luminosity formation process could be made to work. The
bias parameter was introduced to solve a problem: the amplitude of
the velocities on the small scales were too great if the normalization
was performed on the assumption that the mass and light distributions
are identical (b = 1). Increasing the large scale amplitude in order to
solve the problems that appear on large scales therefore has bad effects
on the smaller scales. The small scale correlation function amplitude
becomes too great and the velocity dispersion increases. That conclu-
sion is however predicated on the assumption that CDM describes the
small scale evolution correctly. Other effects, like dynamical friction
and mergers in systems of galaxies that are not accurately modelled in
the simulations could be taking place. So we must await even bigger
(N > 105 or 107 -body models).

4.2.2 CDM with ”gas”

There have been a number of attempts to take CDM further and con-
sider gas flows in the potentials created by the dark matter (Carlberg
and Couchman, 1989). Three dimensional simulations lack resolu-
tion and so Klypin et al. (1990) have done a high resolution CDM
simulation in 2 dimensions, using a cloud-in-cell method to solve the
equations of motion of the dark matter. The baryonic component is
supposed to be glued to the dark matter, and its thermal history is
computed along particle trajectories. In a 50 Mpc. box, the resolution
is 50-100 kpc. That is the advantage of working in two dimensions.
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The simulations show remarkable large scale filaments and voids, rem-
iniscent of the de Lapparent et al. (1986) picture. This conclusion is
supported by the adhesion model simulations of CDM (Weinberg and
Gunn, 1990).

The Klypin et al. simulations show a remarkable feature: the over-
all structure of the model is not dominated by the smallest scales in
the simulation. The galaxies lie along large scale filamentary struc-
tures (though because of the two dimensional nature of the simulation,
we cannot say whether these features would be filament like or sheet
like in three dimensions). This effect is apparently due to the effect
of the velocity field correlations (Klypin, private communication). It
will be interesting to see if this conclusion is borne out by very large
three dimensional simulations.

4.2.3 Adhesion Model

The ”pancake” theories for galaxy formation are well described by an
elegant analytic approximation to the evolution of cosmic structure
first proposed by Zeldovich (1970). In that approximation the position
x; of a particle in comoving coordinates is given relative to its position
¢; at some starting time ¢g by the expression:

zi =q;i — Bt) 5| (62)

where S(g;,to) is the velocity potential field at the time ¢y. The form
of the function 3(t) depends on the cosmological model, but in the
case = 1 it is simply B(t) = (t/to)?/>.

The peculiar velocity of a particle initially at point ¢ is given in
terms of S by

v = a0 o,

and § is directly related to the density fluctuation amplitude at time
to:

(63)

0 0?8,
- =, (64)
P oq
From the equation we see that the approximation is essentially a ballis-
tic approximation in comoving coordinates with respect to the cosmic

[B-time. The gravitational effects of the surrounding mass distribution
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is not taken into account except insofar as gravity was respounsible for
causing the conditions at ¢y. The approximation agrees with linear
theory for the growth of small amplitude density contrasts. An im-
provement on this simple form of the approximation has been given
by Buchert (1989).

The major problem with the Zeldovich solution is the fact that
when the particle orbits intersect, a shock wave should form, dissi-
pating the kinetic energy of the colliding streams (and forming the
”pancakes” which fragment to make the galaxies). The dissipation is
not a part of the approximation and so the streams penetrate and the
pancakes get thicker after a time. Gurbatov et al. (1985, 1989) found
a way of including dissipation in the Zeldovich approximation and at
the same time reducing it to a set of equations well known in the one
dimensional case as ”"Burgers” equation. If we write the Zeldovich
approximation as a fluid flow, then the equation of motion is

8%’ (9Ui

28 "oz,

= vV?u;. (65)

The vV?v; "viscosity” term is introduced to prevent orbit crossing.
Note that the ‘time’ is S-time.

Several things should be noted about this equation. Firstly, there
are no forces on the right hand side due to either pressure or grav-
ity. This reflects the way in which the Zeldovich approximation is a
ballistic approximation. Secondly, there is no explicit appearance of
the density as would have been expected if v were a real viscosity.
This has an important consequence: the equation conserves velocity
rather than momentum in the comoving system. This may cause sys-
tematic deviations between the adhesion approximation and N-body
simulations that start from the same initial conditions. Thirdly, the
equation has an analytic solution. If an explicit density dependence
were introduced, there would be no analytic solution and the method
would have little to commend it.

The equation has an analytic solution (given in terms of a rather
uninformative Green’s function). Numerical simulations in two di-
mensions using the Burgers approximation are relatively straightfor-
ward to implement, but there are some problems in three dimensions
(Nusser and Dekel, 1990). An alternative scheme avoiding such prob-
lems (and directly incorporating biasing) have been developed by Ap-
pel and Jones (in preparation).

The ”adhesion model” avoids the crossing streams problem and
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provides the possibility of making analytic studies of cosmological
models with arbitrary spectra of inhomogeneities. The approxima-
tion is still limited in that it is purely kinematic, the force of gravity
plays no part in the evolution of the density field. It is also formally
valid only as long as the density contrast is not too high. This last
problem was handled by Kofman, Pogosyan and Shandarin (1989)
by using a second order modification of the Zeldovich approximation
(there is great scope for work in that direction). So the major problem
remains the fact that the orbits of the particles are not gravitationally
deflected. This has consequences as can be seen in the comparisons
(Kofman et al., 1989; Weinberg and Gunn, 1990) that have been made
between the adhesion approximation and N-body calculations: the
structural features are all there, but they are frequently in the wrong
place.

The adhesion approximation has been used by Weinberg and Gunn
(1990) to simulate galaxy redshift surveys to a magnitude limit of 15.5,
starting from a CDM spectrum and using a bias parameter b = 2. The
results show remarkable large scale structures. (Though, because of
the way the adhesion approximation works, there are no ”fingers of
God” in the pictures). Park’s (1990) very large N- body simulations
with the same bias parameter confirm this. Park does express a pref-
erence for low Qg on the basis of the appearance of the simulation.

4.2.4 Classical Pancakes

The pancake theory is the archetype theory in which the galaxies form
after the large scale structure has been created. The theory had the
merit that it was relatively straightforward to do simple numerical
simulations based on the Zeldovich’s approximation to the evolution
of small amplitude density perturbations. Pictures of large scale struc-
ture could easily be evolved, and, as it turned out five years later, these
bore a striking resemblance to the pictures published by de Lappar-
ent et al. (1986). The basic review of the pancake theory is that of
Shandarin and Zeldovich (1989).

The pancake theory is based on a spectrum of primordial density
fluctuations that has no high frequencies. The spectral cutoff is sup-
posed to be on scales larger than clusters of galaxies, and so the first
thing to form is the large scale structure. In a purely baryonic cos-
mology with Qy = 0.1 — 0.2 there is a natural cutoff on such scales
provided by the damping mechanisms that operate prior to the re-
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combination epoch. However, it turns out that such large amplitudes
are required (because € is low) that the theory violates the limits on
the isotropy of the microwave background radiation.

The amplitude problem might be solved by adding dark matter,
but it must be a light particle in order that the cutoff scale be large.
For a period of time there was a degree of enthusiasm about the pos-
sibility the neutrino had a mass of several eV’s, and that would have
served well to achieve 2y = 1 while at the same time giving a large
characteristic mass. Simulations of the neutrino based theory (Klypin
and Shandarin, 1983; Centrella and Melott, 1984; Centrella et al.,
1988) gave clear indications of how the large scale structure might
arise.

There are several reasons for the loss of general support for this
theory, not the least of which is the fact that the most likely dark
matter candidate needed by the theory has been almost, but not quite,
ruled out (Scherrer, Melott and Bertschinger, 1989). There may still
be problems with the microwavebackground, and there may be serious
problems with the fact that galaxies should generally form rather late
in this theory.

4.2.5 Decaying WIMPS

One method of saving the pancake theory may lie in supposing that
Qo = 1 is made up of decaying weakly interacting massive particles
(‘WIMPS’). Doroshkevich has been an advocate of model universes
pervaded by unstable dark matter (a heavy neutrino), so that Q;,; = 1
and Q2p = 0.1. Numerical simulations by Doroshkevich, Klypin, and
Khlopov (1988, 1989) show that galaxies still form in the shocked pan-
cakes, but at much earlier times than in the standard heavy-neutrino
theory. (The epoch of formation depends on lifetime of decaying par-
ticle).

Decay of matter slows the growth of perturbations, but the decay
occurs just before start of nonlinear stage of perturbation growth.
(Otherwise the theory encounters a number of difficulties (Efstathiou,
1985; Flores et al., 1986; Vittorio and Silk, 1985)). The amplitudes
required appear to cause no problems for the microwave background
anisotropy limits.

62



4.3 Formation of Galaxy Clusters

Kaiser (1986) considers that clusters formed quite recently and that
material beyond ~ 1.5A~" — 2h~! Mpec, may still be infalling. A test
of this might be the detection of subclustering in the outer regions of
rich galaxy clusters (West and Bothun, 1990).

The idea that galaxy clusters, and in particular their outer regions,
may contain information about their past is an important one. West
et al., (1988, 1989) have examined systematic properties of simulated
clusters, in the hope of recognizing different initial conditions. They
have covered a large part of the cosmological parameter space. They
have looked, for example, at n = —2 — 1,0 and n = 0 pancake sce-
narios and they even do a universe with Qpgryon = Qior = 0.15 and
n = 0. The novelty of the approach was to use low resolution sim-
ulations to locate clusters, followed by high resolution simulations to
discover their properties. (An alternative approach would be to use
Bertschinger’s (1987) method of setting up initial conditions).

They look at density and velocity dispersion profiles, subcluster-
ing and cluster alignment. Perhaps unsurprisingly, they find that the
central regions of galaxy clusters yield little information about initial
conditions. The strongest tests of clustering theories lie in observing
alignments of the clusters with each other and their surroundings, and
in the amount of subclustering present in the outer regions. Simula-
tions with dark matter show a rapid segregation of light and dark
matter, which causes a systemic change of derived mass to light ratio
with appealing to any bias mechanism. The subject is well reviewed
by West (1989).

The role of dynamical friction during the cluster formation process
was considered by Carlberg, Couchman and Thomas (1990) and by
Carlberg and Duninski (1991). They argue that the effect of dynamical
friction is to lower the velocity dispersion of the galaxies in a cluster
relative to the velocity dispersion of the collisionless dark matter. The
ratio of the velocity dispersions is called by them the velocity bias.
The reduced velocity dispersion gives rise to a steeper light profile in
clusters.

Evrard (1989) argues that the CDM theory has a problem in gen-
erating clusters of galaxies having velocity dispersion in excess of
~ 1000 km s~!, of which there are several examples. Peebles, Daly
and Juskiewicz (1989) amplify this. These claims are countered by
Frenk et al. (1990) saying that there is an observational problem in
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knowing what the distribution of velocity dispersions of rich clusters
of galaxies really is. There is even the suggestion that estimates of the
velocity dispersions of such distant galaxy clusters may be hampered
by projection effects.

There has been a lot of work done on the origin of the morpho-
logical types of galaxies in different environments and how these are
modified during the evolution of the cluster via mergers, gas stripping
and other processes. (See, for one random example, Evrard, Silk and
Szalay (1990)).

4.4 Understanding Large Scale Structure

The numerical simulations certainly show how the large scale struc-
tures form, and they allow us to test different hypotheses regarding the
initial spectrum, biasing, cosmological constants and whatever other
parameters come into describing the universe. They do not however
ezplain why the structure is the way it is. In other words, why do we
see voids bounded by sheet-like structures? Until recently, the mod-
els were limited to several tens of thousands of particles, or at most
250,000. As impressive as this number seems, it still imposes a major
limitation on our ability to resolve the structures on scales as small
as galaxies while still looking at the largest structures. There is a lot
of room for trying to develop a mathematical understanding of the
process of structure formation.

The pioneering paper in this area was undoubtedly the work of
Press and Schechter (1974, ”PS”) who through a very simple argument
were able to calculate the mass spectrum of objects that form from a
given spectrum of density fluctuations at the epoch of recombination.
They argued that structure formation is a hierarchical process, the
levels of which are determined by thresholding the density fluctuation
field. The process stops when a limiting threshold is reached. At
first, the limiting threshold was fixed by timescale arguments, but that
idea was later changed when biasing was introduced as the mechanism
whereby galaxies and clusters were discriminated as luminous objects
(Kaiser, 1984; Bardeen, Bond, Kaiser and Szalay, 1986; see also Dekel
and Rees, 1987).

The PS method is purely geometrical and is based only on knowing
the fraction of the mass f,(M) in the universe at recombination that
has density contrast in excess of v standard deviations, o7, when the
density field has been filtered with a window encompassing a mass
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M. (Note that o depends on mass). For Gaussian fluctuations in
density:

F (M) = %erfe {”%)] . (66)
Note that in general v will depend on the mass scale, as would happen
in the case of constant dp/p thresholding. Biased galaxy formation in
its simple form only needs constant v thresholding.

The number of objects in the mass interval M to M + dM is,
according to the PS ansatz:

N(M)AM = 2-2(£,(M) = £,(M + dM))dM

p dfy 1

2ar™ T A
The first of these equations says that the numer of objects appearing in
a given mass interval is simply the number of above threshold regions
that appear when the window radius is changed. The factor 2 is a
famous ”fudge factor” included to account for infalling material. The
second equation is merely a rewrite of the first, showing explicitly how
the mass dependence of the threshold v comes in.

The philosophy behind these equations is however flawed, as can be
seen from numerical simulations of what the PS procedure is actually
counting (Appel and Jones, 1990). Decreasing the window radius, for
example, does not necessarily lead to the birth of objects whose mean
size is known, most regions simply shrink in size as the window radius
is increased.

The Press-Schechter method takes no account of the way in which
gravity works on the mass distribution, or the way mass is converted
into stars. Nevertheless, Efstathiou and Rees (1988) showed that, de-
spite the naivety of the approach, the Press-Schechter formalism pro-
vided an acceptable fitting function to the mass function of objects
identified in N-body experiments on the basis of a ”friend-of-friends”
algorithm. It should be noted that this way of identifying bound ob-
jects in N-body simulations is not in fact what is calculated by the
PS threshold-based argument. In other words, the PS approach pro-
vides a pretty good fitting formula. (See also Carlberg and Couchman
(1989)).

The subject has a long history (Couchman, 1987a,b; Martinez-
Gonzilez and Sanz, 1988; Lucchin and Matarrese, 1988; Appel and

—v2j2 A

dM. (67)
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Jones, 1990; Peacock and Heavens, 1990; to name but a few). Ap-
pel and Jones (1990) presented a new definition for what an incipient
galaxy should be when looking at a random density field. In their defi-
nition, the window radius should adapt itself as a function of position:
the window radius is increased until the local density maximum disap-
pears below some chosen threshold. That radius then defines (up to a
constant of proportionality) the mass of the object. By construction
when using this prescription, objects of small size are rarely embedded
inside bigger objects, thus solving the ”"nesting problem”.

The "nesting problem” is solved by Peacock and Heavens (1990) in
an entirely different way, though like most other authors they accept
the basic tenet that the number distribution is given by the change in
the occupied volume f, (M) with M.

A recent paper by Bond, Cole, Efstathiou and Kaiser (1991) looks
at the way peaks in the density field appear and disappear as the
window function radius is changed. In this sense the approach is
rather like that of Appel and Jones (1990), but their treatment does
not make the simplifying assumption that an object is defined by the
disappearance of a peak when the window radius is increased. What
is interesting is that, in their simplest model, they recover precisely
the Press-Schechter formula!

5 CONCLUSIONS

It is difficult to ‘conclude’ about what is an ongoing and ever growing
part of physics. What I hope is apparent from these lectures is that the
interaction between theory and observation is very strong. The data
being acquired today is constraining the theories we have developed.

Of course that could be because our theories are somewhat naive,
but all that is required is to be willing to update our ideas as new
data makes its impact. The key question today seems to be whether
the Cold Dark Matter theory will survive after playing such a promi-
nent role over the past years. I think that people are too eager to
pronounce it dead. There are very many places where the theory
is rather weak (biasing must be the main weakness), and there are
equally many places where things can be changed without dramati-
cally altering the whole concept (I think of introducing non-Gaussian
perturbations, for example). What bothers me most is that we have
no strong, alternative to take the place of CDM. Even if we were to go
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back to Peebles’ open baryon-dominated universe with initial isocur-
vature perturbations having an n = —1 power spectrum, we would
still have to fix it in order to get around the microwave background
anisotropy constraints.

I think the future here lies in getting bigger and better N-body
models with an attempt to inject more ‘realism’ into the galaxy for-
mation process. It might be that CDM is fine if we do that, except
that we are normalizing everything to the large scales.

From the point of view of the surveys — we obviously need more
of them. It is impossible to assess the Broadhurst et al. pencil beam
surveys without a better basis for doing statistics. My present incli-
nation is to take that data at face value and see whether the N-body
experiments can produce such an effect. I would like the comparison
to be done statistically, not an eyeball test claiming that two pictures
look pretty much the same.

Do Great Attractors exist and if so do they pose a problem for the
standard CDM picture? That is another poorly phrased question, for
there is certainly something out there perturbing the Hubble flow. If
we accept the data at face value, we will have to make the amplitude
(if not the spectrum) of the primordial fluctuations fit the large scales.
That is where the models are best understood and where the data is
probably clearest. As pointed out by numerous authors, that leaves
us with a problem on the small scales, but I am prepared to say that
we do not really understand what is going on there. We certainly do
not understand what is involved in the formation of clusters (it has
been suggested that dynamical friction and mergers will play a role
there), and we understand even less of what is happening on galaxy
scales. The present models are too simple.

So cosmology is not, in my opinion, in a state of crisis — at least
not yet! It is in a state of rapid development and that is what makes
it exciting from both the observational and theoretical point of view.
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