Доклады Болгарской академии наук Comptes rendus de l'Académie bulgare des Sciences Tome 43, N° 3, 1990 ASTRONOMIE Astrophysique ## MASSES AND ROTATIONAL MOMENTA OF 47 SEYFERT AND X-RAY GALAXIES V. A. Mineva, G. T. Petrov (Submitted by Academician K. Serafimov on September 20, 1989) The determination of the masses, the mass-to-luminosity ratios and the internal totational momenta of Seyfert galaxies is a problem of present interest, having in mind that some dynamic characteristics have been determined by some authors only for intividual objects without using unified methods. This complicates the statistical analysis of these galaxies, the comparison and the generalization of the results. Here a unified system of methods for the determination of the above-mentioned quantities is proposed, their mean values are calculated and compared to those obtained by other authors, and some important features typical of Seyfert galaxies are given. The mass of the galaxies is determined on the assumption of a spherical model of distribution of the matter by the formula [1] $\mathfrak{M}_{25} = \gamma^{-1}$. $V_{\mathfrak{m}}^2$. $A_{25}/2$ where \mathfrak{M}_{25} is the mass inclosed in the isophote $25^{\rm m}/\Box''$, $V_{\rm m}$ is the galactic maximum rotational velocity, 4_{25} is the galactic linear parameter up to the indicated isophote and γ is the gravity constant. It is worth noting that when a spherical model is applied, the mass of Sc and alaxies is increased by 25% [2]. To determine the linear parameters and the absomagnitudes, the reduction scheme proposed by Karachentsev et al. [3] is apslied. If V_m is not known from optical observations, it can be determined when he value of W_{20} is known (the 21-cm radiolinewidth of HI at a level of 20% of the naximum intensity) by the calibrated dependence of Fisher and Tully [4] 1.5 $W_{20}/\sin i = 1.2 V_{\rm m}$ where *i* is the inclination of the galaxy toward the line of sight. The total internal rotational moment of the galaxy *K* is calculated by the formula [5]. $\zeta = \frac{2}{5} \cdot \varepsilon_T \cdot \mathfrak{M}_{25}(\gamma \cdot \mathfrak{M}_{25} \cdot A_{25}/2)$ where ε_T is a dimensionless coefficient measuring what art of the galactic mass is involved in the rotation. Depending on the morphological ype, ε_T acquires values from 0.10 to 1.00 [6]. Respectively, to find the relative internal noment k, the formula $k=K/\mathfrak{M}$ is used. According to this system of methods, we have etermined the masses, the mass-to-luminosity ratios and the internal rotational momenta f 47 Seyfert galaxies (13 X-ray and 34 non-X-ray sources). The results of the calculaions of the X-ray Seyfert galaxies are presented in Table 1. The columns of the Table st the following data: 1 — the number of the Seyfert galaxy according to various atalogs (NGC, Mrk); 2 — the galactic type of activity; 3 — the morphological type; — the linewidth at 20% of the maximum intensity of λ 21 cm. As a source of the adiodata, Huthmeiers catalog was used. The mean values of W_{20} are given in the case then more values are published for a given galaxy. When the catalog contains data n W at levels of 20%, 25% and 50%, preference was given to the magnitudes V_{20} and W_{25} which are assumed to be equal. If for some galaxy only W_{50} was determed, then W_{20} was calculated by the empirical correlation $[^1](W_{20}) = 1.38(W_{50})$; 5— ne galactic radial velocity corrected for the motion of the Sun $[^8]$; 6— the linear alactic diameter in kpc. The morphological type of the galaxy T, its linear diameter ter A_{25} and the visible flatness e_{25} (the latter are not shown in the Table) are determined by using various data sources, such as de Vauculeur's catalog, Nilson's catalog and Vorontsov-Veliaminov's catalog. The data sources are preferred in the abovementioned sequence. For galaxies with diameters available only in Vorontsov-Veliaminovial catalog. Table 1 | N | TS | Т | W 20 | V ₀ (km/s) | Aknc
25 | (10 ¹⁰ M⊙) | $M_{H_0}^c$ | (f_{\odot}) | lg K _i | lg A, | |------------------|--------------|-------------------|-------------|-----------------------|---------------|-----------------------|-------------|---------------------------------|-------------------|---------------| | Mrk 348
N 262 | Sy 2 | S_a | 145 | 4689 | 29.11 | 10.62 | —19.72 | 9.48 | 0 30 | -0.14 | | Mrk 506 | Sy 1 | S_a | 414 | 13059 | 62.32 | 38.21 | -21.77 | 5.16 | 0.70 | 0.31 | | Mrk 1376 | Sy 2 | S_a^a | 336 | 1842 | 20.58 | 5. 35 | -19.46 | 6.08 | 0.82 | -0.36 | | N 1365 | Sy 1 | S_b^a | 409 | 1527 | 57.88 | 3.58 | -19.08 | 5.77 | -0.80 | -0.17 | | N 2992 | Sy 1 | S_a^b | 444 | 2071 | 32.70 | 14.83 | -18.86 | 29.19 | -0.06 | —0.0 3 | | N 3227 | Sy i | Sa | 294 | 1058 | 23.07 | 8.12 | -19.16 | 12.12 | -0.52 | -0.25 | | N 4051 | Sy 1 | S_c S_b S_b | 333 | 735 | 17.11 | 12.31 | -18.95 | 22.38 | -0.21 | 0.11 | | N 4151 | Sy 1 | S_h | 200 | 99 3 | 26.97 | 8.36 | -19.90 | 6.33 | 0.42 | -0.15 | | N 4388 | Sy 2 | S_b° | 431 | 2418 | 56.17 | 22.72 | -21.48 | 4.04 | 0.39 | 0.22 | | N 5033 | Sy 1 | S_c^{σ} | 430 | 92 9 | 41.45 | 9.84 | -20.23 | 5,53 | 0.17 | 0.03 | | N 5548 | Sy 1 | S_{α} | 160 | 5113 | 33.72 | 7.73 | 21.47 | 1.37 | -0.47 | 0,18 | | N 7469 | Sy 1 | S_a | 8 85 | 5043 | 31.31 | 94.51 | -21.84 | 11.96 | 1.14 | 0.37 | | N 7582 | S y 2 | S_b^a | 330 | 1524 | 23.0 0 | 5.91 | 18.16 | 22.22 | 0,68 | 0.26 | | n=13 | | | | | | | | 10. 8 9
± 2 36 | 0.17
±0.16 | 0.06
±0.06 | inov's catalog, a transition to Nilson's system of diameters was performed depending on the morphological type of the galaxy. This procedure was applied to the galaxy N7582; 7—the galactic mass in units of $10^{10} \, \mathrm{M}_{\odot}$; 8—the absolute stellar magnitude of the galaxy; 9—the mass-to-luminosity ratio in units of f_{\odot} ; 10—the galactic rotational moment in k_g ; 11—the logarithm of the relative galactic internal moment in k_g . The last line of Table 1 lists the mean values and the errors in the magnitudes in columns 9, 10 and 11. Table 2 contains the results of the calculations of non-X-ray Seyfert galaxies. The denominations are analogous to those in Table 1. Some data are added and amendments are made in the columns of Table 2 as compared to Table 1. Column 1 lists the Seyfert galaxy number according to other catalogs (NGC, UGC, Mrk, Akn). In column 6 for the Markarian galaxies Nos 358, 700 and 1261, a transition to Nilson's system of diameters is performed. For the galaxies listed in Tables 1 and 2, the variation of the mean values of the magnitudes f, K and k according to Hubble's sequence is followed and com- pared with data by other authors. Our results for the $\langle f \rangle$ values are as follows: 10.45 ± 1.48 for SO; 9.57 ± 1.88 for S_a ; 9.02 ± 1.64 for S_b and 15.20 ± 5.13 for S_c . The mean f value for SO is uncertain because of the unsatisfactory statistics (only 4 objects). Though, our result is in good agreement with the data by other authors: 9.1 ± 1.1 according to Mineva and 9.3 ± 1.7 and 11.7 ± 2.0 according to Faber and Galacher for two samples of galaxies. The $\langle f \rangle$ value for the S_a type is very close to that obtained by Rubin et al. by using rotational curves — 9.9 ± 1.3 . The same refers to the Sb type for which Efstation et al. give the mean value 7.9 ± 0.5 of the mass-to-luminosity ratio for the same morphological type. The $\langle f \rangle$ value for the S_c type is an exception for which Efstation et al. obtain analogous mean value which is two times lower than ours, i. e. 7.1 ± 0.4 , while, according to a study of double galaxies, Schweizer gives $\langle f \rangle = 21+5$ which is two times higher than ours. For the K_i and k_i values of the studied galaxies, we present the following data: 14.10 ± 11.3 for SO; 2.33 ± 0.84 for S_a; 2.44 ± 0.92 for S_b; 6.08 ± 5.48 for S_c and 1.60 ± 0.87 for SO; 1.00 ± 0.14 for S_a; 1.05 ± 0.19 for S_b; 2.05 ± 0.84 for S_c. Table 2 | N | TS | T | W ₂₀ | V ₀ (km/s) | A ^{kpc} 25 | $\frac{\mathfrak{M}}{(10^{10}\mathfrak{M}_{\odot})}$ | M [€] _{H₀} | f (f_{\odot}) | lg K _i | lg k _i | |--------------------------------------|------------------------------|---|----------------------------------|--|---------------------------------------|---|-------------------------------------|--------------------------------|---------------------------------|--------------------------------------| | mrk 1 | | Sa | 235 | 5006 | 13.40 | 3 .10 | 19.56 | 3.20 | —1.30 | 0.57 | | N 449
Mrk 10
U 4013 | Sy 1 | S_b | 625 | 8827 | 65.07 | 59.46 | -22.20 | 5.40 | 1.05 | 0.47 | | Mrk 176
U 6527 | Sy 2 | S_{α} | 485 | 7987 | 34.09 | 2 2.86 | 21.04 | 6.0 8 | 0.24 | 0.07 | | Mrk 358
Mrk 391
N 2691 | Syl
Syl | SO
Sa | 511
345 | 13284
3945 | 55.15
24.49 | 74.25
9.76 | 2 2. 13
2 0.32 | 7.28
5.00 | 0.93
0.39 | $0.25 \\ -0.20$ | | Mrk 463
U 8850 | Sy 2 | s_b | 160 | 15082 | 58.52 | 3.79 | 22.32 | 0.31 | — 0. 77 | -0.16 | | Mrk 471
U 9214 | Sy 1 | S_a | 305 | 10313 | 3 6. 01 | 9 .85 | -21.72 | 1 .3 9 | -0.30 | -0.10 | | Mrk 533
N 7674 | Sy 2 | S_b | 467 | 8861 | 34.38 | 79.6 8 | —22.37 | 6.22 | 1.11 | 0.39 | | Mrk 700
U 10675 | Sy 1 | S_{a} | 235 | 10296 | 33.16 | 7.25 | —21.00 | 2.00 | 0.52 | -0.19 | | Mrk 1261
Akn 253 | Sy 1 | S_a | 745 | 7616 | 20.98 | 65.31 | 21.72 | 9.30 | 0.81 | 0.19 | | Mrk 1291
N 3660 | Sy 2 | S_c | 290 | 13401 | 142.9 9 | 87.50 | 22.00 | 9.63 | 1.52 | 0.77 | | N 1052
N 1068
N 1566 | Sy 3
Sy 2
Sy 1 | \mathcal{E}_{S_b} | 381
334
226 | 1467
11 0 4
1241 | 16.39
38.55
36.55 | 9.17
41.77
10.96 | -19.67
-21.79
-18.29 | 8.57
5.56
36.65 | -1.40
0.71
0.12 | 1.22
0. 27
0. 02 | | N 3031
3081
3185
N 3718 | Sy 1
Sy 2
Sy 1
Sy 1 | S _b
SO
S _a
S _a | 440
276
33 3
476 | 85
2142
1136
109 9 | 8.57
18.20
8.81
46.91 | 4.73
8.14
3.08
26.91 | 17.80
19.08
18.47
19.82 | 24.76
13.09
8.7
21.88 | -1.05
-0.75
-1.40
0.41 | 0.52
0.48
0.67
0.17 | | N 3982
N 4258
N 4579 | Sy 2
Sy I | S _b
S _b
S _b | 245
435
373 | 10 72
536
1695 | 9.98
45.75
35.32 | 7.87
21.01
28. 8 5 | -19.48 -20.38 -21.12 | 8.78
10.25
7.09 | 0.67
0.30
0.45 | 0.38
0.16
0.17 | | N 4594
N 4941
N 5005 | Sy I
Sy 2
Sy 2 | Տ գ
Տ _b
Տ _b | 790
296
190 | 973
621
1050 | 33.64
8.91
25.67 | 53.77
2.34
2.43 | 21.27
17.60
20.61 | 11,54
14.81
0.95 | 0.79
1.52
1.22 | 0.24
0.67
0.44 | | N 5273
N 5347
N 5635 | Sy 1
Sy 2
Sy 3 | SO
S _b
SO | 276
144
7 79 | 1093
2408
1207 0 | 13.10
15.88
112.40 | 8.29
2.03
183.63 | —19.12
—19.63
—22. 9 2 | 12.85
1.97
8.58 | 0.81
1.45
1.68 | 0.54
0.58
0.60 | | N 5728
N 5929
N 6221 | Sy 2
Sy 2
Sv 2 | Sa
Sb
Sc | 539
220
308 | 2799
2 6 60
1258 | 30.63
11.35
15.42 | 26.61
11.38
6.53 | -19.72
-20.02
-18.76 | 23.76
7.74
14.13 | 0.31
0.92
0.66 | 0.07
0.27
0.28 | | N 6300
N 6500
N 7319
N 7682 | Sy 2
Sy 3
Sy 2
Sy 2 | $egin{array}{c} \mathbf{S}_b \ \mathbf{S}_b \ \mathbf{S}_a \end{array}$ | 331
545
204
277 | 9 92
3174
6901
5 3 40 | 20.67
30.17
46.59
22.79 | 8 .10
46 .20
10.0 0
10.78 | 19.18
20.61
20.96
20.67 | 11.93
18.19
2.86
4.04 | 0.49
0.72
0.13
0.34 | -0.22
0.24
0.05
-0.18 | | n=34 | · | | | • | | | | 9.84
±1.34 | -0.15
±0.16 | -0.10
±0.07 | Compared to the results obtained for Turner's [5] double galaxies, for the sample of galaxies — members of systems with various degree of multiplicity and for 84 Markarian galaxies, for the Seyfert galaxies we have noted the minimum value of the magnitudes K_{i} and k_{i} in the S_{a} type and their growth toward the S_{c} type. From the comparison between our results and those obtained by other authors it can be concluded that the mean values of f for the individual morphological types of the Seyfert galaxies are in good agreement. As far as the peculiarities of the rotational momenta of these objects are concerned, it should be pointed out that they have been observed for the first time in Seyfert galaxies and that they will be studied in detail in our next publication. ## **REFERENCES** ¹ Karatchentsev, I. Sov. A. J. 62, 1985, 3. ² Van Moorsel, G. Neutral Hydrogen Observations of Binary Galaxies. Rijksuniversiteit te Groningen, 1983. ³ Karatchentsev. I., V. Karatchentseva, A. Sterbanovskii. Astroph. Invest. (SAO) 19, 1985, 3. ⁴ Fisher, J., R. Tully. Ap. J. Suppl. 47, 1981, 139. ⁵ Mineva, V. Sov. A. J. 13, 1987b, 367. ⁶ Karatchentsev, I. Binary Galaxies, M. Science 1987. ⁷ Huthmeier, W. K., O. Richter. A General Catalogue of HI Observations of External Galaxies, Europ. Southern Observ., Prepr., N 250, 1983. ⁸ Palumbo, G., G. Tanzella-Nitti, G. Vettolani. Catalogue of Radial Velocities of Galaxies, New York, London, Paris, Cordon and Breach, 1983. ⁹ de Vancouleurs, G., A. de Vancouleurs, H. Corwin. Second Reference Catalogue of Bright Galaxies. Texas, Austin, 1976. Department of Astronomy and National Astronomical Observatory Bulgarian Academy of Sciences Sofia, Bulgaria