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What Makes a Galaxy
ACTIVE ?
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ALL 'GALAXIES ARE ACTIVE, BUT...
- . SOME GALAXIES ARE MORE ACTIVE
.. THAN OTHERS
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observations

A galaxy may appear “normal”
at one frequency, yet, it could
appear really active at another



First ask: what is a Normal Galaxy ?
Our Galaxy the Milky Way

Axel Mellinger, 2000



An Infrared View of Our Galaxy
(activity often depends on wavelength !)
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BRIEF AGN HISTORY LESSON

 Fath (1907, PhD, Lick) - Spectrum of
NGC1068, followed by Slipher, Curtis,
Hubble...

e Carl Seyfert (1943) - Postdoc at Mount
Wilson

* Radio Stars, extended sources c. 1952
* What are quasars? Maarten Schmidt 1963

* Two basic types Khachikian and Weedman
(1973):

Seyfert type 1, broad hydrogen emission
lines, narrow forbidden lines

Seyfert type 2, narrow hydrogen emission
lines, narrow forbidden lines



AGN HISTORY LESSION

 Fath (1907, PhD, Lick) - The first
AGN spectrum

Taken using a photographic plate.

Interestingly he noticed a very
slight disagreement between the

observed wavelengths of the
emission lines, and their laboratory

HRYR'ERAENF it at the time, but he had

measured the comological redshift !
20 years before Hubble’'s famous paper



AGN HISTORY LESSON
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' Radio astronomy, evolved from

e radar developed during world war 2.
. 3/ Early observations showed that some
o I 8 /. sources were extended, and so could
"~ . .notbefrom point source stars :
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Radio Galaxy with a jet — image in radio
(the jet carries the energy into the bright radio
lobes. Energy generated at very centre is
transported across millions of light years, HOW?)




AGN HISTORY LESSON
* What are quasars? Schmidt 1963

measurement and consequences of
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Comparison
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The Quasar
3C 273

3C 273 was the
first quasar
which was

| shown to be the
Normal galaxies -
at the same ; | nuc?leus of an
distance as the A active galaxy.
Y

i Quasars can be
up to 1000
more luminous
than massive
galaxies.

HST IMAGE OF 3C273




lationship between the Host Galaxy and the A
Quasar 3C 273 HST = WFPC2, ACS

Ferrarese and Merritt 2000 — BH||mass and Bulge Luminosity

WFPC2 ACS/HRC L
NASA, A. Martel (JHU), the ACS Science Team, J. Bahcall {IAS) and ESA STScl-PRC03-03




The Diagnostic Power of Spectroscopy
Optical Spectrum of a “Normal Galaxy”
made up of varlous stellar populatlons
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A Quasar Spectrum
(Unlike a normal galaxy this has emission lines
which require high energy photons to produce)
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End of history lesson — now we
consider the properties of AGN

Enormous energy emitted from a very
small volume — stars cannot do this

Energy emitted over vast frequency
range, from radio to gamma rays — stars
cannot do this

Influence of the AGN can extend
~1,000,000 light years in case of some
radio galaxies

Their spectra have strong broad emission
lines, and highly ionised species



Quasars are like Seyferts, but we see their UV lines

30000 T T T
Typical low redshift Seyfert spectrum
to the right of the arrow >
25000 - _ _ | |
Typical medium redshift
quasar spectrum to the
20000 L < left of arrow ]
- |
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What the emission lines can tell us

* The nucleus is emitting energetic photons
able to ionise the gas

* The widths of the emission line, when
converted into velocity via the Doppler
effect, is equal to many 1000°s km/s

* To keep this gas bound ie. not lost, it must
be less than the escape velocity which
requires the presence of a high mass at the
nucleus (does not prove presence of BH)



A brief “deadend” in Quasar research, late 60’s/early 70’s
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AGN emit at all frequencies
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Total Energy Output

* Milky Way Galaxy = 10* erg/s
* Most energetic nhormal galaxy = 10* erg/s
* Active Galaxies = 10* to 10® erg/s

* can be up to 100,00 times more luminosity than the
Milky Way!

* may be similar to a normal galaxies energy but have a
different spectrum



Variability and size of the emitting region

Brightness

EBrightness

A B Time

Thelight from side A reaches us beforethe light from side B
s0 even if the object could brighten everyrwhere sirmultaneously,
thereis still a delay in brightening observed by us,



X-ray Lightcurve of NGC4051 (low luminosity
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X-ray lightcurve of 3C 273 (60 ksec.), high
luminosity AGN

So, variability gives us an idea of size (maximum) of the emitting volume
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The Quasar Problem

* How can so much energy ie. up
to100,000 times the emission from a
normal galaxy, be produced in such a
small volume?

* Answer: by means of accretion onto a
supermassive black hole



Accretion Processes in Quasars

* The efficiency of energy generated
via nuclear fusion is far less than that
generated by accretion of matter onto
a black hole (less than 1%)

* 10% efficiency for non-spinning black
hole, up to ~30% for a spinning black
hole (because IMSO is closer to BH)

* To power a typical quasar needs
about 1 solar mass of material to be
converted into energy every year



Motions of Stars in the Galactic Centre

(from their Keplerian orbits implies a black hole
with ~4 million solar masses)

1992 . 10 light days .




Accretion Power in Astrophysics
works for X-ray binaries and AGN
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What restricts the accretion power?
The Eddington Limit

When the radiation pressure on Frac
the material being accreted
= force of gravity.

For objects emitting

at the Eddington limit, the i
Black Hole mass can be directly
calculated from the bolometric
luminosity

M/L



Spectra of accretion flow via a disc

Differential Keplerian rotation
Viscosity and gravity — heat o
Thermal emission: L = AoT?

Temperature increases inwards

GR last stable orbit gives
minimum radius R__

For L~L_,, the T 1s
* 1keV (10" K) for 10 M

+ 10 eV (10° K) for 108 M, -
LogVv

Log Vv (V)




log (relative vf,)

CONTINUUM ENERGY DISTRIBUTIONS OF QUASARS
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The Accretion Disc in a Quasar
Strong X-ray emission comes from near to
the event horizon of the Black Hole




Do we see the effects of
Joonen General Relativity? YES
disk em. M ‘T“G |
Special relativity >
beaming, = |
enhances blue " )‘ :ﬁ or ,' \ -
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vF, (Arb. Units)

X-ray Properties of AGN
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The influence of gas/dust and stars

* The dust absorbs radiation at short
wavelengths and then re-emits it at longer
wavelengths

* (Gas from outside the nucleus finally gets
accreted onto the black hole, by means of
an accretion disc

* Stars may be “shredded” as they plunge
into the black hole, bright UV flares

e Star formation around the nucleus



The Importance of Geometry
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AGN HISTORY LESSON

* The Unified Scheme, Antonucci and
Miller (1985) - A geometric based
explanation of the observed differences
between different classes of Seyferts




NGC 1068: Hubble Space Telescope

Another consequence of
the geometry of dust obscuration is collimation



Heavily Obscured Active Galactic Nuclei

Dust
torus

Central black
hole and
accretion disk



The Important role of dust

Optical and UV emission absorbed by dust and
re-radiated at mid-far infrared wavelengths

uv Optical Infrared Far Infrared
A

4

Luminosity

>
Wavelength



[ I T T T T T TYTTIT T 1 rrrrrg
q Dust Bump in 3C273
= - f .
e ! =3
w =19 =
o - ]
£ : T
- Fi : \'.
= ! vos by
/ v P
; o b
107 ; AL S
C L 1ael J.J' 1 11 I|I|| |"Tl II 1 ||.|||| I'.l
"||:|12 1[:]1-3- ]D'M 1D15
' ¥ (Hz)

Hot dust bumps are observed in some quasars

TTTTrN ¥ T T T rrIT]

Extreme Dust Bump

E

.
g |
i
£
U -
T
=10

A A = .
on N ]
L

= :
s

=Y
o

=%

107" .l -




X-rays - the key togpbscured AGN

-.‘"'“ W f\&”, g .‘.5‘.

X-rays: (1) apparently a universal property of AGNs which

allows AGNs to be identified irrespective of their optical/other
properties, and (2) can probe heavily obscured objects




The Supermassive Black
in our Milky Way §

. Sgr A*

X-ray Image (Chandra)




Galactic Centre X-ray Flares

Slide adapted from
Hasinger 2006

EE light daya

F= 10+ i o L
160

100 -

counts/ (104 =)

nllll LIyl 110l 1111l 18311 1101 1010 1111 1111

X-ray (XMM-Newton) & NIR (VLT)

flux

12 |-K-band 16.06.2003t = "47™a8% (UT)

40 80

time (minutes)

Sgr A* flares
discovered by
Chandra

(Baganoff et al.), XMM-
Newton (Porquet et
al. ,2003) and VLT

NIR (Schédel et al.,
2003)

Time Variability
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keV/cm” s keV
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Now we can understand why
AGN emit at all frequencies

log (relative vf,)
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BIG QUESTION
Inflow and Outflow

* We know that accretion powers the central
engine of AGNs

* We also know that some galaxies have
massive radio jets that extend far beyond
the host galaxy

* So, how are these two phenomena
related?



What is the relation between...

ACCRETION WINDS

Inflow. ..

- ' ™

Jets and winds are';biauiqt—owus In astrophysics






Mass Loss via Winds




A Galactic Supernova Outflow: M82




Maybe a wind can disrupt the disc ?




Demographics of Black Holes
(the obscured Universe — X-rays & IR)

Accretion power versus star formation
* How many dust obscured AGN?? Evolution?
* How many AGN hidden by star formation
within the nucleus? Evolution ?
* How many low luminosity AGN? Evolution?
* Related to several of the above questions
— are there Intermediate Mass Black Holes?






Correlation between black hole mass and
galaxy bulge mass/luminosity
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Evolution of Star Formation with Redshift
(the AGN/starburst connection)




Correlation between black hole mass, and vel. dispersion of stars
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James Webb Space TeIescope (JWST)

| Successor to HSTI | . 'NIRCAM': 07 5|1m |mag|ng

 6.5-m dlameter telescope * NIRSPEC: 1 5 Lm multl-object

cooled to30 K - spectroscopy

r’“IVIlRI 5,28 um im'aging_ and

: 'Wavelength range
- 0.5-30 um \\
\

‘Launch 2013 ?

..f';;f-';' Grunmiman
Space Technology




Why AGN are Important for
understanding Galaxy Evolution
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Galaxy collisions are quite common
More so, Iin the past...
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Ultraluminous Infrared Galaxies




Galaxy Collison

o
Visualization by Simulation by

Frank Summers Chris Mihos &

’ Lars Hernoguist




The Dance of Death
Merging Black Holes - Gravitational waves




Probing extreme environments via
Gravity Waves from ground and space
Detection of gravity wave

universe ‘

a new window on the
4

*Formation and environment of ../ “Test General Relativity, and
o10 black-hole theories Link with
106 M%! | particle physics————
TN .

S & RAVITATIONAL WAVE OBSERVATORIE



Recall, AGN “Physics” is only .
~ 50 years old — there will surely.be
Some BIG surprises still to come! "




Active Galactic Nuclei

What we know
What we don’'t know, and...
What we don’t know — we don’'t know
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