"Challenges in modern Astrophysics" OPTICON awareness conference Sofia, 13-14 October 2009

Scientific organisers:

Michel Dennefeld Martin Ward

Invited lecturers:

A. LeCavelier (France) F. Hammer (France) B. Nordstroem (Denmark) X. Barcons (Spain) M. Ward (UK) St. Wagner (Germany) B. Leibundgut (ESO) Z. Tsvetanov (NASA) E. Gonzalez (UK) E. Semkov (Bulgaria) T. Bonev (Bulgaria)

СРТГСОК ОРТСОК 1869 Какадемия на науките 1869 LOC:

K. Panov (Chair) R. Konstantinova-Antova M. Dechev V. Popov

Astronomical infrastructures, observing facilities and recent upgrades in Bulgaria

Tanyu Bonev

Institute of Astronomy Bulgarian Academy of Sciences

Outline

1. National astronomical Observatory, Rozhen 2.Astronomical Observatory Belogradchik 3. Department of Astronomy, Faculty of Physics, University of Sofia 4.Astronomical Center, Shumen University **5.**Popular observatories and Planetaria 6.RACIO - Regional Astronomical Center for **Reseach and Education**

National Astronomical Observatory - Rozhen Where we are?

Пловдив

София

NAO is at altitude of 1750 m, 30 km N from Smolyan (35 000) and 15 km SE from Chepelare (8 000)

March 1981 – official opening of The National Astronomical Observatory at Rozhen

National Astronomical Observatory – Rozhen The dome of the 2-meter tel<u>escope</u>

photometer

2m telescope – oprtical scheme and instruments

High-resolution astro-spectroscopy

Relative Intensity

<u>Coude - performance</u> Despite the lower spectral resolution (compared to the best examples) spectrograms are valuable for studying the physical conditions in stellar atmospheres.

4232

Wavelength, Å

4242

2-m Ritchey-Chretien-Coude telscope

Evolution of the light echo after the outburst of V838 Mon in January 2002

2-chanel Focal Reducer Rozhen (FoReRo2) Modes of Observations

Broadband imaging
 Narrowband imaging
 Long slit spectroscopy
 Fabry-Perot imaging
 Imaging polarimetry

FoReRo2, an example Narrow band imaging of comet Q4 (NEAT)

- k *

On-line, 616 nm, H_2O^+

Off-line, 642 nm, Continuum

Comet Q4 (NEAT), May 26, 2004 H_2O^+ ions in the near nucleus region

Comet Q4 (NEAT), May 26, 2004

Dynamics of the H₂O⁺ ions in the near nucleus region

11 frames × 300 sec exposure Total time of the sequence < 1 h

Schwassmann_Wachmann 3, observations at Rozhen, 2006, May 3-10

Schwassmann_Wachmann 3, observations at Rozhen, 2006, May 3-10

FoReRo2

Linear polarization

Spatial distribution of CN in comet 8P/Tuttle (January 2008)

Observation

Recent upgrades: 2005 - automation of the photometer, 2006 - 2007: autoguiding system

Photometer

Inside of the

Recent upgrades – 2008 new coating of the optics (funding from the Bulgarian academy of sciences)

SPECTRA OF The ECLIPSING BINARY UU CAS

(about 50 before coating, 100-120 after), allowed detection of clear line splitting in HeI. In addition to HeI, 3 metal lines have been

Running upgrade – 2009 new control system for the 2-meter telescope

- 1. March 26 2009 Contract signed with the company Projectsoft.
- In the last 2 years Projectsoft produced CSs for 2 other 2-meter telescopes made by Carl-Zeiss: Ondrejov and Terskol.
- 3. The design of the new CS is based on Siemens industry controllers.
- 4. High reliability, improved pointing accuracy, optimized positioning strategy, remote control, ...
- According to the negotiated schedule the new CS should be commissioned in September 2009.
- Funding comes from a project with the National science fund (contract No. DO 02-85).

New control system for the 2-m telescope

New control system for the 2-m telescope

ProjectSoft	21.9.2009 20	0:58:41		Tele	scope I	Petrov	•	-0	\mathbf{X}
Telescope co	ordinates	Inpu	t coordinate	s	Oil		On Off		On
RA 19h 0	0m 00,00s	RA	19h 00m	00,00s	Telescope	Stop slew	On Off	Tra	ck
DEC 41° 4	41' 41,0"	DEC	41° 41'	41,0''	H	ia <mark>On</mark>	DE	c <mark>On</mark>	
Orientation EA	AST	-	Elevation	82.53°	Declination centering	ł	Start Sto	p	
UTC 17b 59	8m 36 48s	User s	peeds		Tracking		On Off		On
		RA 0.00"	Is DEC 0.00	O <mark>"/s</mark> On	Hour axis calibration		Start Sto	p	Yes
LST 19h 40	0m_01,/1s	Correcti	ions	ייר	Declination axis calibrati	on	Start Sto	p	Yes
HA 0h 4 (0m 01,69s	RA <u>0.0</u>		<u> </u>	Corrections		Detail		
Azimuth	273.34°	Manual	l control		Aberration		On Of	F	Off
Elevation	82.53°		DEC+		Precession and nutation	1	On Of		Off
Air mass	1.01	RA+	I	RA-	Refraction		On Of	F	Off
Coudó rotation	11.58°		DEC-		Error model	Index 0	On Of		Off
	in)				Guide mode		On Off	2	Off
Input (RA, DEC)	Object	5000"/s	120.00"/s	2 00"/6	Apertures				
TPoint record	TPC	000073	HA quide limit	2.00 /s	Coude	Or	oe Clo	Stop	Close
					Tube	Op	e Clo	Stop	Close
Platform			Parl	ked	Slit	Op	oe Clo	Stop	Unknown
Dome									
Azimuth on the dom	1e 99.33°	ON OFF	Aut Stop C	Off	Focus			Stop	Off
Actual position			+ - 1	81.03°	Actual position	Fast	Slow +	•	50.00mm
New position	Rel Start	0.00°	Abs Start 1	80.00°	New position	Rel Start 0.00	mm Ab	s Star	50.00mm
		vont	www.pp	niectsof	t ez		A CrR	1	yuu 😎

New control system for the 2-m telescope First results: accuracy of positioning Application of Tpoint model

Remote control of the 2-meter telescope

www.logmein.comOpen VPN

Running upgrade - 2009 Optical fiber connectivity with the external world Should be performed during the summer and commissioned in September

Planned upgrade – 2009 – 2011 (?) new echelle spectrograph for the 2-meter telescope

- 1. FEROS like design
- 2. Fiber fed, bench mounted, ...
- Presently, the available funding can cover the purchase of some components only. In order to keep the schedule we will start with the items which require most time between order and delivery.

Summary - 2-m RCC telescope upgrades in the period 2004 - today

Year	Upgrade (instrument, camera, other) and funding					
2004	• 2-channel focal reducer (co-operation with MPS, Germany)					
	versafray CCD, 1340 x 1300 (SREAC, UNESCO)					
2005	Substantial improvements (automation) of the fast photometer (bilateral co-operation, BG-Ukraine)					
2006-2007	Autoguiding system (SREAC, UNESCO grant)					
2008	New alluminization of the 2-m mirror (BAS)					
2009	• New control system (contract with NSF, DO 02-85).					
	• A set of diaphragms to suppress scattered light (joint efforts of colleagues from the Dept. of Astronomy at the University of Sofia and Inst. of Astronomy at the Bulgarian Academy of Sciences (see poster).					

The 60 cm Cassagrain telescope, equipped with a CCD camera

3056x3056 active pixels, 12x12 µm pixel size

Observations with the 60 cm Cassagrain telescope Example: transiting exoplanets

Observations with the 60 cm Cassagrain telescope, Transiting exoplanets, comparison with the 2-meter telescope

0.21

0.26

0.31

The 50/70 cm Schmidt telescope

Astronomical Observatory Belogradchik, site for research, education, development and test of new instruments

University of Sofia, Department of astronomy at the Physics Fakulty.

1892 - first Bulgarian astronomical observatory
1904 - Ciril Popov - first scientific publication in astronomy
1952 - Nikola Bonev - first ideas and steps for creating a National Astronomical Observatory

Astronomical center of Shumen university

Регионален Астрономически Център за Изследвания и Образование (РАЦИО)

> Regional Astronomical Center for Research and Education (RACIO)

RACIO - Organizational structure

0

The role of RACIO

Will foster the competitive position of the regional astronomical community in the European research area.

 Will attract young people to astronomy and natural sciences in general

"Challenges in modern Astrophysics" OPTICON awareness conference Sofia, 13-14 October 2009

Fund

Scientific organisers:

Michel Dennefeld Martin Ward

Invited lecturers:

A. LeCavelier (France) F. Hammer (France) B. Nordstroem (Denmark) X. Barcons (Spain) M. Ward (UK) St. Wagner (Germany) B. Leibundgut (ESO) Z. Tsvetanov (NASA) E. Gonzalez (UK) E. Semkov (Bulgaria) T. Bonev (Bulgaria)

LOC:

K. Panov (Chair) R. Konstantinova-Antova M. Dechev V. Popov

> Questions, please!

Astronomical infrastructures, observing facilities and recent upgrades in Bulgaria

