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Abstract. The Titius-Bode law (TBL) establishes the regularity (near-commensurability)
of orbital sizes or periods in the Solar System and in exoplanet systems. TBL has not
been explained convincingly yet, but the correlations between the parameters of TBL
and the parameters of the orbital system revealed in this paper may be useful.

Since the TBL model depends on the preliminary numbering of the orbits, we created
an improved method for objective numbering and building of an optimal TBL model. The
method tests numerous possible gradients in the logarithmic version of the TBL model.
It produces reasonable error curves with minima, corresponding to ”good” numberings.

The method is applied to 30 orbital systems, including 17 exoplanet systems (con-
taining at least 4 exoplanets with known masses), 2 versions of the Solar System with
6 or 8 regular planets, as well as 2 versions of the Solar System with 4 only Terrestrial
Planets and with only 4 Jovian Planets, 5 systems of regular moons of the Jovian Planets
plus Pluto, as well as 4 systems of small internal satellites of the Jovian Planets. We show
that usually the optimal numbering (and the optimal TBL model) is not unique. For this
reason in the majority of cases we explore two TBL models - main and alternative.

In the Solar Systems the rotation period of the central body supports approximatively
the TBL model. However, among 8 exoplanet systems with available rotation period for
the star, this rotational period is arbitrary high and useless for the fit of the TBL model.
For this reason we do not use the rotational period of the central body in the case of the
Solar System, too. Otherwise, from the point of view of the TBL, in comparison with
other similar stars, the Sun seems to be very slow rotator.

In this paper we compare two geometric parameters of the TBL model, gradient and
separability, with three physical parameters of the orbital system - mass of the central
body, total mass of the orbiting bodies and (for planetary systems only) metallicity of
the star.

All 10 mutual correlations between the used 5 parameters (for 18 planetary systems)
occur positive. On the base of the Pearson correlation coefficient and the Student slope
criterion some of these correlations may by considered as dependences. The dependence
between the gradient and separability of the TBL model is the most remarkable. Gen-
erally, the gradient and the separability of the TBL model depend mainly on the total
mass of the orbiting bodies, but this mass in the exoplanet systems correlates well with
the metallicity of the star.

Other 6 correlations, based on the satellite systems of the solar planets, extended
by the exoplanet systems, are shown. The most remarkable are the the dependences of
the TBL gradient on the mass of the central body and on the total mass of the orbiting
bodies The First of them seems to be linear over 8 magnitudes of the masses of the central
body. The second of them is fitted by 3-rd order polynomial over 10 magnitudes of the
masses of the orbiting bodies.

Harmonic resonances of the orbital periods are not discussed here.
Key words: Solar system - Titius-Bode law; Exoplanets - Titius-Bode law

Introduction

The Titius-Bode rule has been found by Johan Titius in 1766 [Wittenberg]
and advertised away by Johan Bode after 1772 [Berlin]. The Titius-Bode
law (TBL) has been established as a generalized heir to the Titius-Bode
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rule in 20-th century (Hogg 1948, Roy & Ovenden 1954, Goldreich 1965,
Dermott 1968, Nieto 1972).

While the Titius-Bode rule takes place only for 8 orbits in the Solar
System (the orbits of Mercury, Venus, Earth, Mars, Ceres, Jupiter, Sat-
urn and Uranus), the TBL occurs well-performed for the solar planets, for
the moons of Jupiter, Saturn and Uranus (Dermott 1968), as well for the
moons of Neptune and Pluto (Georgiev 2016). Recently the validity of the
TBL has been established in all, more than 200 tested exoplanet systems
(Chang 2010, Bovaird & Lineweaver 2013, Huang & Bakos 2014, Bovaird et
al. 2015, Altaie 2016, Aschwanden & Scholkmann 2017, Aschwanden 2018).
Today any case of not-performance of the TBL would be regarded as unex-
pected and important news. For this reason today the interest in the TBL
is increasing.

In the present paper we distinct Titius-Bode law, TBL, as a natural
law, from Titius-Bode relation, TBR (but not Titius-Bode rule), as a TBL
model, based on concrete data.

The existence of TBL as a structural law in orbital systems is not ex-
plained conventionally (Hills 1970, Hayes & Tremaine 1998, Linch 2003,
Neslušan 2004). It seems harmonic resonances of orbits may be one of the
key approaches (Aschwanden & Scholkmann 2017). Therefore, possible cor-
relations between the geometrical parameters of the TBL and the physical
parameters of the orbital system may be of interest for the understanding
of the TBL. In our previous works we regarded 6 orbital systems in the
Solar System and we found correlations between the gradient of the TBL
and the mass of the central body or the total mass of the orbiting bod-
ies (Georgiev 2016, 2017). However, the number of used orbital systems,
only 6, is obviously small for final conclusions. Exploring published data
(Section 1) and suitable methodics (Section 2, 3, Fig. 1, Fig. 2), here we
look at TBRs for 30 orbital systems (Section 4, Appendix A) and show 16
correlations (Section 5m Appendix B).

According to the 3-rd Kepler’s law the major orbital semi-axis A (in
[AU]) and the relevant orbital period P (in [yr]) are connected analytically:

A ∝ P 2/3. Then the sense of the TBL consists of approximative regularity
(near-commensurability), in which A or P grow up with acceleration while
the distance from the central body increases.

In principle the TBL concerns the regular orbiting bodies, that have
relatively large sizes and masses, almost circular orbits and almost compla-
nar orbits (Dermott 1968). However, other smaller bodies in the systems
often follow the TBR too (Dermott 1968, Georgiev 2016).

Usually the TBL model is presented by a power-law function

(1) An = A0.A
n
C or Pn = P0.P

n
C .

Here n = 1,2, ..., N are the numbers of the orbits or periods, An or Pn
is the n-th major semi-axis or orbital period. The constants A0 or P0, as
well as AC or PC , are considered intrinsic characteristics for every orbital
system, which ought to be estimated empirically.

The model of the TBL may be presented and used also through expo-
nential function (Poveda & Lara 2008, Panov 2009).
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The constant AC or PC is the regularity (near-commensurability) pa-
rameter. The constant A0 or P0 is the scaling parameter which may be
associated with orbit or period under number n = 0. Remarkable fact is
that P0 corresponds well to the rotation period of the central body in the
system of Solar Planets, as well in systems of the regular moons of Jupiter,
Saturn, Uranus (Dermot 1968), Neptune and Pluto (Georgiev 2016). For
this reason the TBL is used preferably written for the orbital periods P .
Another reason is that the constant PC has resonance sense. For all solar
planets PC ≈ 2.6 ≈ 5/2. For the Terrestrial 4 Planets only and for the
regular 4 moons of Jupiter PC ≈ 2/1.

In the logarithmic space the conventional TBL model (from Dermott,
1968, to Bovaird et al., 2015), used also in this paper, takes the form

(2) log Pn = log P0 + G.n

For the sake of convenience hereafter we note the gradient (the slope
coefficient) of the TBL model (Eq.2) by G:

(3) G = log PC

Note that the value of the constant PC (Eq.1) does not depend on the
kind of logarithm, but the gradient G (Eq.3) does.

The gradient G is our first geometrical parameter of the TBL model.
One example is a reduced Solar System consisting of 4 Terrestrial planets
only (#19 in Table 2 and Appendix A) with G1 = 0.29 (Pc = 1.95, Ac =
1.56). Another example is a Solar System consisting of 4 Jovian Planets
only (#19 in Table 2 and Appendix A) with G1 = 0.38 (Pc = 2.41, Ac =
1.80).

Any TBR, based on the TBL model (Eq.2), depends crucially on the
preliminary numbering of the periods (orbits). Often the numbering is not
obvious. Such case is the Neptune system (#24 in Table 2 and Appendix
A). For this reason we created a computer program that proposes optimal
numberings for accurate TBRs (Section 2).

Occasionally the program for optimal numbering assigns one number to
two periods or it reveals holes (spaces, empty numbers of periods). Thus
using N input available periods the program may reveal L 6= N output
optimal numbers (periods). For this reason we introduce and use also a
parameter, that characterizes the separability of the optimal numbering:

(4) S = log L/N .

The separability S or L/N is our second geometrical parameter of the
TBL model. One example are the exoplanets in the system of Kepler 11
(#4 in Table 2 and Appendix A) with separability L/N = 4/6. Another
example is the regular moons in the system of Neptune (#24 in Table 2
and Appendix A) with separability L/N = 8/3.

Despite possible incompleteness of the lists of the known exoplanets, the
separability parameter S occur useful when comparing the orbital systems.

We estimate the constants log P0 and G = log PC , plus their standard
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errors, together with the standard error (sample mean square deviation) σ
of the TBR (Eq.2) by a fit (linear regression). For the sake of convenience
we express the standard error of the TBR fit through the relative value, r,
in percents:

(5) r[%] = (10σ − 1).100

The method of objective numbering, presented in Section 2, shows that
usually the system of the optimal numbers is not unique. For this reason
we are forced to regard in this paper at least two systems of numbers (and
two TBRs) – main and alternative. Two examples are shown and discussed
in details in Section 3.

TBRs for 30 orbital systems are regarded in the present work, including
17 exoplanet systems with known masses of the exoplanets, 2 versions of
the Solar System with 6 or 8 regular planets, 2 versions of the Solar System
with 4 Terrestrial Planets only or with 4 Jovian Planets only, 5 systems
of regular moons of the Jovian Planets plus Pluto, as well as 4 systems of
small internal satellites of the Jovian Planets (Section 4, #0–#29 in Table
2, Table 3, Fig. 1, Fig. 2 and and Appendix A).

In this paper we reveal correlations between the geometrical parameters
of the TBR – gradient G and separability S and the physical parameters
of the fundamental parameters of the orbital system – mass of the central
body, log M0, total mass of the orbiting bodies, log MS and metallicity
[Fe/H] of the star (for planetary systems only). After comparing 18 plane-
tary systems we expand the correlation ranges to include the systems of the
regular moons in the Solar System, as well the systems of the small inner
satellites of the Jovian Planets (Section 5, Appendix B).

The further text is divided into 5 sections. Section 1 represents the input
data. Section 2 is concentrated on the method of objective numbering of
the orbital periods. Section 3 introduces main and alternative TBRs on 2
characteristic examples. Section 4 represents TBRs in 30 cases. Section 5
represents mutual correlations between the regarded parameters. Section 6
summarizes the main results.

1. Input data

According to the catalog of Schneider (2017) among 616 known multiplan-
etary systems there are 71 systems with at least 4 exoplanets. We find and
use only 17 such systems with estimated masses of the exoplanets. The
Solar System with 8 regular planets is added and used as 18-th system.

Table 1 contains the input data about the planetary systems – serial
number of the system, used also in Appendix A, name of the star, spectral
class and metallicity [Fe/H] of the star, mass of the star,M0, in solar masses,
mass of the star, log M0, in Earth masses, total mass of the exoplanets, log
MS , in Earth masses, number of the used planets N , and literature sources.

The available data, collected in Table 1, has variable accuracy.
The metallicity [Fe/H] and the mass of the stars M0 are given within

accuracy of 5-10 %, but for the mass of the star HR 8799 the accuracy is
about 20 %. Error estimations are not given for the masses of the stars
Gliese-876, Kepler-89 and µ Arae.
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The masses of the exoplanets are estimated with low accuracy, 10-40
%, but for the system Kepler-62 the errors seem to be about 100 %. Error
estimations are not given for the exoplanets around the stars Kepler-80,
Kepler-107 and µ Arae. Only lower limits of the masses of the explanets
are estimated for the systems in Table 1 with numbers from #10 to #17.
However, the data about these systems do not deviate remarkably from the
correlations and we considered these data may be used too.

Some other remarks also are necessary. In the case of Gliese-876 the
exoplanets 2 and 3 (f and g) are used here as ”confirmed”. In the case of
Kepler-11, after comparison of the radii of the other exoplanets, the mass
of the most distant and unconfirmed exoplanet (g) is adopted to be 8 Earth
masses. In the case of Kepler-80 the mass of the most inner exoplanet (f)
was adopted to be 3 Earth mases. At Gliese-581 the exoplanets 4 and 5 (g
and d) are used as ”confirmed”. In the case of HD 10180 the exoplanets 3
and 6 (i and j) are used as known too.

Table 1. Input data about the regarded planetary systems(see the text)

# Star Class [Fe/H] M0[M⊙] logM0[M⊕] logMS [M⊕] N Source

1 Gliese 876 M4V 0.19 0.37 5.091 3.017 6 [R2010]
2 HR 8799 A5 0.20 1.47 5.690 3.917 4 [M2010]
3 HR 8832 K3 0.20 0.79 5.422 2.204 7 [N2015]
4 Kepler-11 G6V 0.00 0.96 5.505 1.479 6 [L2013]
5 Kepler-20 G8V 0.02 0.91 5.482 1.784 6 [F2011],[B2016]
6 Kepler-80 M0V -0.56 0.73 5.386 1.440 5 [M2016]
7 Kepler-89 F8V -0.01 1.25 5.619 2.125 4 [T2013],[M2013]
8 Kepler-107 G2V 0.09 1.18 5.594 1.313 4 [EDE2017]
9 TRAPPIST-1 M8V 0.04 0.08 4.427 0.602 7 [H2016],[G2017]
10 Ups And A F8V 0.08 1.27 5.626 3.914 4 [W2009]
11 55 Cns A G8V 0.21 0.95 5.500 1.134 5 [D2010],[W2011]
12 Gliese-581 M3V -0.33 0.31 5.014 1.508 5 [R2014]
13 Gliese-676 M0V 0.23 0.71 5.374 3.971 4 [A2012]
14 HD 10180 G1V 0.08 1.06 5.549 2.229 9 [T2012]
15 HD 40307 K2V -0.31 0.75 5.397 1.555 6 [TA2012]
16 Kepler-62 K2-5V -0.37 0.69 5.361 1.176 5 [B2013]
17 Mu Arae G3IV 0.30 1.10 5.564 3.109 4 [P2006]
18 Solar System G2V 0.00 1.00 5.522 2.650 8 [IAU2006]

Generally, the available data on multiplanetary systems are not too full
and too accurate. Though, they occur good enough for the purposes of this
work.

2. Objective numbering of the orbital periods for TBR

.
Each TBR is based on a preliminary numbering of the periods (orbits).

Often the numbering is not obvious nor unique. For this reason an objective
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method for numbering is used in the present work. It is an improved version
of the method, used in the paper of Georgiev (2016). We created a computer
program that scans reasonable interval of TBR gradients G (Eq. 3). Usually
we use a testing interval for G from 0.1 to 0.7 and scamming step of 0.001.
The program produces error curves whose local minima corresponds to
”good” numberings, as follows.

Initially, the input numbers of the available orbital periods in increasing
order are Pk, k = 1, 2, ..., N . Further N -1 differences Qk = log Pk - log
P1, k = 2, 3 ,..., N , are explored. For each tested value of G the program
derives N -1 quotients uk = Qk/G. It finds also the integer mk that is the
nearest to uk and derives the relevant error difference ek = uk −mk. The
mean square value of all such differences is used as an error function ε in
dependence on G:

(6) ε = [Σe2k/(N − 2)]1/2, k = 2, 3 ,..., N .

This error function characterizes the goodness of the numbering mk, k
= 1, 2, ..., N , corresponding to the tested value of G. The behavior of ε
in dependence on G is an almost smooth curve, whose minima correspond
to ”good” numberings. Such error curves, transformed in relative values,
r[%] (Eq.5), are shown in the low-right corners of TBR diagrams in Fig. 1,
Fig. 2 and Appendix A.

The program applies the numbers mk, corresponding to each tested
value of G, to also fit a TBL model (Eq.2). The individual deviations from
the fit are dk = log Pn - log P0 - G.nk. Then the fit standard error, which
may also be regarded as an error function on G, is

(7) σ = [Σd2k/(N − 2)]1/2, k = 2, 3 ,..., N .

Such error function is presented by steps in the low-right corners of the
TBR diagrams in Fig. 1 and Fig. 2 only. In the bounds of each step of this
function different values of G produce the same series of numbers.

Furthermore, the user chooses from a minimum of the error curve (Eq.6)
an approximate value of a ”good” gradient and introduces it in the same
program. In a second run the program derives accurate statistics of the TBR
fit under the chosen ”optimal” numbering. (In the first run the program the
introduced gradient is dummy, but belonging to the chosen testing interval
for G.)

The output numbers of the orbital periods, are mk, k = 1, 2, ..., N .
Occasionally mk 6= nk and the full output number of periods is mN = L.
Usually L 6= N . Then the separability quotient L/S (Eq.4) characterizes
the optimal rarefaction of the periods (orbits). If the user chooses another
”optimal” gradient, he derives another ”optimal” TBR (Section 3).

By default the first input number is n1 = 1 and the first output number
is m1 = 1. But the gradient of the TBR numbering is invariant in respect
to an additive integer to the numbering. Therefore, the use of another first
input/output number is admissible. In 6 TBRs in the Solar System the
rotational period of the central body supports the TBR and it is used for
the fit under number n1 = m1 = 0 (Dermott 1968, Georgiev 2016).

However, in the available exoplanet systems the stellar rotational period
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occurs typically high and unusable for the fit of the TBR (Section 4.1). For
this reason we do not use the rotational period of the central body in all
TBR fits in the present work. Though, sometimes we add reasonable integer
number for TBR in the Solar System to check how much the rotation period
of the central body corresponds to m1 = 0 (Section 4.2).

Furthermore, the output numbers of the orbital periods in the TBR
diagrams, signed along the abscissa axes of the diagrams, are noted as
usual by n.

3. Main and alternative TBRs with 2 characteristic
examples

Usually the error curve (Eq. 6), produced by the method for objective
numbering (Section 2), shows a few local minima and so the choice of the
really optimal TBR numbering is difficult. Here we regard 2 TBRs, based
on 2 ”good” numberings - main and alternative. Characteristic examples
about the planetary systems of the Sun and 55 Cns follows.

Figure 1 shows error curves (Eq.6,7) and TBRs in an artificially sim-
plified version of Solar System with 6 planets. The Earth and Neptune are
excluded because of their significant deviations from the ”standard” TBR
(Dermott 1968, Neslušan 2004). Thus the error curve (Eq. 6), shown in
the low-right corner, becomes simple and clear. The wide and deep main
minimum gives the optimal gradient G1 ≈ 0.42, corresponding to PC =2.64
and AC = 1.91. The respective optimal numbers are signed along the left
solid regression line in Fig. 1. This is the ”main” TBR with standard error
r = 6.6 % (Eq.5).

In Fig. 1 the orbital periods of the planets, used for the fit, are presented
by dots. The fit predictions are marked by large circles. The main TBR,
presented by solid line, is very close to the ”standard TBR”, where one
hole under n = 4, corresponds to the Main Asteroid Belt (or to Ceres). The
optimal position of the Earth, together with Venus (n = 2), Ceres (n = 4),
Neptune, together with Pluto (n = 8), Eris (n = 9), as well as the rotation
period of the Sun (PS = 25 days, n = 0), are marked by small circles. The
rotation period of the Sun, as well as the orbital periods of the Earth and
Neptune, show the largest deviations from the fit. The gradient (Eq.3) and
separability (Eq.4) of this main TBR are G1 = 0.42 and L/N = 7/6.

In Fig. 1 other deep but narrow minima of the error curve (Eq.6) corre-
spond reasonably to G2 = G/2 and to G3 = G1/3. This special example is
created mainly to show well these ”harmonic” minimums. In such clear case
the depth of these minima are almost the same as the depth of the main
minimum, but usually the main minimum is more shallow. Here the ap-
propriated ”alternative” TBR, corresponding to G2, is shown by the right
dashed regression line. The parameters of the main and alternative TBRs
are included in Table 2 under #0, but they are not used for the correlations
in Section 5.1.

In the alternative TBR the optimal numbers, beginning by default by
n = 1, are increased additionally (artificially) by 2. Thus, the rotation
period of the Sun is well predicted under number n = 0. In this TBR
Mercury takes number 3, while the numbers 1 and 2 occur empty. The
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Fig. 1. Error curves (Eq.6, 7) in the low-right corner and TBRs regression lines, cor-
responding to gradients G0, G1 and G2, for a simplified Solar System with 6 planets.
Upper abscissa axis contains output TBR numbers, n. Ordinate axis corresponds to or-
bital periods, log P , in days. Dots represent data, used for the fits. Circles represent the
fit predictions. Small circles show the best positions of other orbiting bodies and the
rotation period of the Sun. Horizontal dashed line is the level of the rotation period of
the Sun. The parameters of the main TBR (solid line) are noted in the diagram. (See
also the text.)

Earth falls into number 6 and does not appear as extraordinary planet in the
system. Totally 7 numbers occur free between Mercury and Uranus. There
the Earth, Ceres, Neptune, Pluto and Eris take the predicted numbers
6, 9, 17, 18 and 20, respectively. The gradient of the alternative TBR is
G2 ≈ 0.21. Since the numbers of Mercury and Uranus are 3 and 16, the
separability (Eq.4) is L/N = 13/6.

Which TBR version in Fig. 1 is better, the main or the alternative? In
this simple case the alternative TBR (i) has gradient G2 = G1/2 and (ii)
it poses the same accuracy as the main TBR. Therefore, this alternative
TBR, shown by the right dashed line, should be ignored. However, usually
the conditions (i) and (ii) are not fulfilled, even the alternative TBR is
significantly more accurate. For this reason in the cases of the planetary
systems (Diagrams #1-#20, Appendix A) we regard two TBRs - main,
corresponding to G1, and alternative, corresponding to G2. We regard main
and alternative TBRs even in cases with G2 = G1/2. However, for the
satellite systems of the Solar planets, excluding regular moons of Saturn,
(Diagrams #21-#25, Appendix A) the method of the objective numbering
(Section 2) reveals only one, main, TBR.

In Fig. 1 the most right part of the error curves (Eq.6) shows wide and
shallow minimum, centering on the gradient G0 ≈ 0.56. In the respective
TBR, presented by the left dashed line, the Earth falls again on n = 2,
together with Venus, but the hole of the Main Asteroid Belt is absent. This
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TBR, having very high standard error, ≈ 30 %, seems to be too rough.
Hereafter, such rough TBRs are ignored.

Figure 2 presents the complicated case of the exoplanet system around
the star 55 Cns (#11 in Table 2). This is a detailed version of Diagram A11,
pulled out from Appendix A. The TBR, corresponding to G0 ≈ 0.66 (PC =
4.57, AC = 2.75), with r ≈ 20 % is presented by a dashed line. This is the
most steep TBR among all TBRs in this paper. One similar TBR, presented
by the most left short dashed line, is found by Poveda & Lara (2008). These
authors predict the periods of 2 unknown exoplanets (open squares), one
internal and one external for the known system. The shift between these
TBRs is due to different values used for the first orbital period. But if
we add 1 to the numbers of Poveda & Lara (2008), both TBRs coincide.
Using more accurate input data (#11 in Table 1) we may predict through
our TBR fit (dashed line) two internal planets, marked by open circles.
Though, in the present paper we ignore this rough and extraordinary steep
TBR.

In Fig. 2 we consider that the main TBR of 55 Cns is characterized by
G1 = 0.43 and r = 9.2 %. It is shown by left solid curve. Yjis TBR reveals 5
internal free numbers, which may correspond to unknown planets. The total
output number is L = 10 and the separability is L/N = 10/5. Almost the
same TBL model is found by Bovaird & Lineweavwe (2013), noted by right
short dashed line. These authors predict 3 unknown exoplanets, 2 internals
and 1 external (open squares). Both TBRs are sightly distinct because of
slightly different input data. The TBR, found by Curtz (2012), not shown
here, predicting 4 unknown internal exoplanets, practically coincides with
our main TBR.

In Fig. 2 the alternative TBR (right solid line) has G2 = 0.26, r = 3.5
% and L/N = 16/5 (#11 in Table 2). In contrast to the Solar System #0,
(i) the gradient of the alternative TBR of 55 Cns is not harmonic of the
gradient of the main TBR and (ii) the accuracy of the alternative TBR
is significantly higher. We can not ignore this alternative TBR. Moreover,
such pairs of TBRs dominate among the exoplanet systems.

After excluding of the most rough TBR (dashed line) the main and
alternative TBRs of 55 Cns occurs very similar to the main TBR of the
Solar System (# 18 in Table 2). However, the known size of the system of
55 Cns seems to be about 10 times shorter in comparison with the Solar
System including Neptune. The majority of the exoplanet system have such
short sizes.

Besides, while the rotation period of the Sun (Ps = 25 days) supports
the TBL models of the Solar System under number 0 (#0, #18-#20), the
rotational period of 55 Cns (Ps = 42 days) corresponds well with the orbital
period of the 3rd known exoplanet there.

4. TBRs for 30 orbital systems

The method for deriving the main and the alternative TBRs (Sections 2, 3,
Fig. 1, 2) is applied to 30 orbital systems. The results are presented in Table
2, Table 3, and Appendix A. The diagram A11, concerning the system 55
Cns, is shown on Fig. 2.
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Fig. 2. Error functions and TBRs for the complicated system 55 Cns. Solid lines cor-
respond to the main and alternative TBRs. Dashed line shows the rough TBR, whith
ia ignored. Short dashed lines and squares show TBRs and predicted planets of other
authors. (See Fig. 1 and the text.

Diagrams A1-A20 and Table 2 present 17 exoplanet systems (#1-#17),
Solar System with 8 planets (#18), Solar System with 4 Terrestrial Planets
only (#19) and Solar System with 4 Jovian Planets only (#20). Diagrams
A21-A25 and Table 3 present 9 satellite systems in the Solar System (#21-
#29). Juxtapositions of the parameters of the orbital systems are presented
in Section 5 and Appendix B as diagrams B1-B16.

Solar System with 4 Terrestrial Planets only is considered for compari-
son with the known parts of the exoplanet systems (B1-B10). These parts
are typically not large and not multinumerous. Solar System with 4 Jovian
Planets only is intended for comparison with the systems of regular moons
of the solar planets (B11-B16). Since the total mass of the Jovian Plan-
ets exceeds the total mass of the Terrestrial Planets about 250 times, the
Jovian Planets are just the regular bodies in the Solar system.

The right bottom corners of the diagrams A1-A25 show error functions
ε (Eq.6), transformed to relative values r % (Eq.5), in dependence on the
tested gradients G (Eq.3). In the case of the satellites of the Jovian Plan-
ets (A21-A24) two error functions are presented, one for the inner small
satellites only (left) and another for the regular moons (right).

For the planetary systems and the regular moons of Saturn the positions
of the minima G1 and G2 are used for deriving the main and alternative
TBRs. Alternative TBRs are not found for the regular moons of Jupiter,
Uranus, Neptune and Pluto, as well as for the small internal satellites of
Jupiter, Saturn, Uranus and Neptune. For the inner satellites of the last
mentioned 4 planets the positions of the minima are marked by Gi (A21-
A24).
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The upper parts of the diagrams in Appendix A present TBRs. The
abscissa axis contains the output system of the period numbers n (Sections
2,3). The ordinate axis corresponds to the orbital periods, log P , in days.
Dashed horizontal lines show the logarithmic values of rotation periods of
the stars (if they are available), noted by PS , and of the planets, noted by
PP , in days.

The dots in the diagrams corresponds to the periods, used for the TBR
fits. Solid lines represent the fits (linear regressions) of the main and al-
ternative TBR over the used periods. The relevant optimal (output) TBR
numbers of the used periods are signed along the lines. Open circles show
the fit predictions. Empty circles may be regarded as predictions for stable
periods or for unknown (or not existing) orbiting bodies. In the diagrams of
the Solar system (A18-A25) the positions of other known bodies are marked
by small circles.

In diagrams A1-A17 for the exoplanet systems input and output num-
bers of the shortest periods, used for the fit, are n = 1. However, in diagrams
A18-A25 for the Solar System the output numbers are sometimes increased
additionally to ensure the position of the central body close to number
n = 0. For example, in the case of Jupiter (A21) such goal is reached by
increasing the numbers by 1. Then number n = 1 in this system rests empty.

Short dashed lines in the diagrams A1, A10, A15 and A17 correspond
to TBRs, found by Bovair & Lineweaver (2013), where the empty squares
show predicted periods of unknown exoplanets. The distinctions between
the TBRs of Bovair & Lineweaver (2013) and our TBRs are due to different
methods of TBR building and to small distinctions in the input data.

4.1. TBRs for 21 planetary systems

Table 2 summarizes the TBR results about 17 exoplanet systems (#1-
#17) and 4 versions of the Solar system (#0, #18, #19 and #20). There
the values G1 and G2 are the gradients (Eq.3) of the main and alternative
TBRs, followed by the relevant standard errors of the gradients σ(G1) and
σ(G2), relative standard errors of the TBRs r(TBR)[%] (Eq.5) and the
separability parameter L/N (Eq.4).

Table 2 shows that the TBRs of the exoplanet systems #1-#17 may be
characterized by different relative accuracy: 8.4-28.5 % for the main TBRs
and 3.1-13.3 % for the alternative TBRs.

The ranges of the gradients and separabilities of the main TBRs here
are bounded by the exoplanet systems of TRAPPIST-1 and Gliese 676: G1

= 0.286-0.470 (PC = 1.93-2.95, AC = 1.55-2.06) and L/N = 5/7-12/4. One
serious exception is the system of 55 Cns, whose rough TBR with G0 =
0.66 is ignored (Fig. 2).

The total number of empty periods (spaces) in the planetary sequences
is 25 for the main TBRs and 98 for the alternative TBRs, while the cases
when the same period is assigned to 2 periods (orbits) is respectively 7 and
1.

Solar System needs special attention.
In the version with 8 regular planets (#18) the parameters of the TBRs

are very close to the parameters in the case of 6 regular planets (#0). In
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Table 2. Output data about the main and alternative TBRs for planetary systems,
shown in Fig. 1,Fig. 2 and Appendix A. (See the text.)

# Star G1 σ(G1) r(TBR)[%] SE G2 σ(G2) r(TBR)[%] L/N

0 Sol.Sys.[6p] 0.421 0.005 6.6 7/6 0.210 0.003 6.6 13/6
1 Gliese 876 0.294 0.011 12.6 7/6 0.151 0.002 3.8 13/6
2 HR 8799 0.332 0.011 6.0 4/4 0.166 0.006 5.9 7/4
3 HR 8832 0.403 0.010 17.7 8/7 0.279 0.004 10.2 11/7
4 Kepler-11 0.327 0.028 18.6 4/6 0.179 0.007 8.1 7/6
5 Kepler-20 0.328 0.028 24.0 5/6 0.261 0.009 9.4 6/6
6 Kepler-80 0.306 0.037 23.7 4/5 0.167 0.003 3.7 7/5
7 Kepler-89 0.383 0.017 8.4 4/4 0.192 0.008 8.4 7/4
8 Kepler-107 0.333 0.077 28.5 3/4 0.221 0.019 6.9 4/4
9 TRAPPIST-1 0.286 0.023 19.3 5/7 0.152 0.005 6.0 8/7
10 Ups And A 0.413 0.010 13.1 8/4 0.244 0.001 1.9 13/4
11 55 Cns A 0.426 0.006 9.2 10/5 0.258 0.001 3.5 16/5
12 Gliese-581 0.343 0.016 12.3 5/5 0.190 0.006 7.6 8/5
13 Gliese-676 0.476 0.018 14.4 12/4 0.300 0.006 13.3 21/4
14 HD 10180 0.330 0.009 18.8 11/9 0.221 0.003 8.1 16/9
15 HD 40307 0.330 0.016 15.4 6/6 0.195 0.004 6.1 10/6
16 Kepler-62 0.426 0.023 19.2 5/5 0.271 0.010 12.7 7/5
17 Mu Arae 0.375 0.007 8.8 8/4 0.165 0.001 3.1 17/4
18 Sol.Sys.[8p] 0.404 0.011 19.7 8/8 0.214 0.003 9.1 16/8
19 Sol.Sys.[4T] 0.289 0.028 15.4 4/4 0.221 0.011 7.6 5/4
20 Sol.Sys.[4J] 0.382 0.023 12.3 4/4 0.226 0.011 10.7 6/4

the main TBR Venus and the Earth take n = 2, the period n = 4 is empty
and the rotational period of the Sun is about 1.6 times less than the TBR
prediction. In the alternative TBR, Venus and the Earth occupy numbers
4 and 5, many numbers occur empty and the rotational period of the Sun
is better predicted. The accuracy of the alternative TBR is 2 times higher.

The TBRs of the reduced Solar System, containing 4 Terrestrial planets
only (#19) shows relatively low gradients and relatively low accuracy. The
main TBR predicts well the rotational period of the Sun and an empty
period under n = 1. However, the main TBR is not valid for more distant
parts of the Solar System. The alternative TBR does not predict the rota-
tional period of the Sun and predicts two empty periods close to the Sun,
but it is valid for the periods of Ceres and Jupiter.

The TBRs of the reduced Solar System, containing 4 Jovian Planets
only (#20), answers to the condition of the use of regular orbiting bodies
only. These TBRs show relatively low accuracy and they form different
systems of periods in the region of the Terrestrial Planets. However, the
TBRs, based on the 4 Jovian Planets only, predict well the rotation period
of the Sun.

Generally, from the point of view of the TBL, it seems two planetary
populations cohabit in the Solar system.

In the end, among 8 exoplanet systems with known rotational period
of the star (Appendix A, dashed horizontal lines) the rotational period of
the star stands typically high and placed among the orbital periods of the
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exoplanets. The relevant stars are similar to the Sun, but from the point of
view of the TBRs, the rotation of the Sun seems slow.

4.2. TBRs for 9 satellite systems of solar planets

The TBRs for about 9 satellite systems of solar planets are presented in
diagrams A21-A25. The relevant input/output data are collected in Table
3 (#21-#29). In contrast to works of Dermott (1968) and Georgiev (2016,
2017), but similar to the work on exoplanet systems here we do not use the
rotational period of the central body for the TBR fit.

We regard TBRs for the regular moons of the Jovian Planets plus Pluto,
as well as for inner small satellites of the Jovian Planets. The sources of data
are NASA (Solar system exploration, https://solarsystem.nasa.gov/) and
JPL (Planetary Satellite Physical Parameters, https://ssd.jpl.nasa.gov/).

The systems of Neptune and Pluto contain only 3 satellites, which may
be considered as regular. Still, these systems occur useful when comparing
correlations between the orbital systems and they are explored too.

Table 3 summarizes the input and output data about the satellite sys-
tems of solar planets. The numeral columns in Table 3 contain mass of the
planet, log M0, in Earth masses, total mass of the used satellites, log MS ,
in Earth masses, TBR gradient G (Eq.3), standard error of the gradient
σG, relative standard error of the TBL model r(TBR)[%] and separability
parameter (Eq.4)of the TBR L/N .

Table 3. Input and output data about systems of moons (#21-#25]; 21-A25) and systems
of small inner satellites of the Jovian Planets (#26-#29); A21-A24). (See the text.)

# Name logM0[M⊕] logMS [M⊕] G(TBR) σG(YBR) r(TBL)[%] L/N

21 Jupiter 2.50 -1.14 0.323 0.011 5.92 4/4
22 Saturn 1.95 -1.63 0.243 0.007 11.90 9/7
22 Saturn-2 1.95 -1.64 0.184 0.002 6.27 13/7
23 Uranus 1.17 -2.81 0.250 0.010 7.62 5/5
24 Neptune 1.24 -2.44 0.358 0.001 0.55 8/3
25 Pluto -2.66 -3.58 0.195 0.002 1.37 5/3
26 Jupiter-i 2.50 -6.40 0.116 0.003 1.79 4/4
27 Saturn-i 1.95 -6.34 0.053 0.007 1.80 2/5
28 Uranus-i 1.17 -6.06 0.071 0.001 4.42 6/10
29 Neptune-i 1.24 -5.72 0.056 0.001 5.18 5/6

In Table 3 the string ”Saturn2” contains data about the alternative
TBR of the system of regular moons of Saturn. The last 4 strings contain
data about the system of small inner satellites of the Jovian Planets.

The satellite system of Jupiter (Sheppard 2016) is dominated by the 4
Galilean moons (Jo, Evropa, Ganimede, Calisto). We shifted additionally
their output TBR numbers by 1 and the result numbers become respectively
2, 3, 4, 5. Thus the rotational period of Jupiter supports well the TBR under
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n = 0, while the orbital period n = 1 is empty (#21, A21). We build TBR
also for 4 small inner satellites with diameters 15-167 km. Their output
optimal TBR numbers are Metis – 1, Adraste – 1, Amalthea – 3 and Thebe
– 4 (#26, A21).

The moon system of Saturn (Jacobson et al. 2006) occurs very compli-
cated and we are forced to regard main and alternative TBRs (#22, A22).
The output numbers for the 7 regular moons (Mimas, Enceladus, Tethis,
Dione, Rhea, Titan, Iapetus) in the main TBR (without shift) are 1, 2, 2,
3, 4, 6, 9, respectively. The alternative TBR (after shifting by 1) is more
rarefied but more accurate. The rotational period of Saturn does not sup-
port well any TBR. Six inner small satellites, with diameters 15-179 km,
support another TBR. They take only 2 different optimal TBR numbers:
Pan – 1, Atlas –1, Prometheus – 1, Pandora – 2, Epometheus – 2, Janus –
2 (#27, A22).

In the system of Uranus (Jacobson et al. 1992) 5 regular moons (Mi-
randa, Ariel, Umbriel, Titania, Oberon) form a TBR which is well sup-
ported by the rotational period of Uranus (#23, A23). Ten inner satellites,
with diameters 40-160 km, support another TBR under 5 different optimal
TBR numbers: Cordelia – 1, Ophelia – 2, Bianca – 3, Cressida – 3, Desde-
mona – 3, Juliet – 3, Portia – 3, Rosalind – 4, Belinda – 4, Puck – 5 (#28,
A23).

The system of Neptune (Jacobson 2009) is strongly rarefied. It con-
sists of only 3 regular moons (Proteus, Triton, Nereid). They take output
numbers 1, 3 and 8, with separability L/N = 8/3. The rotation period of
Neptune does not support well the TBL model (#24, A24). Six inner small
satellites with diameters 16-194 km support their own TBR with 5 different
optimal TBR numbers Naiad – 1, Thalassa – 1, Despina – 1, Galatea – 2,
Larissa – 3 and S/2004 – 5 (#29, A24).

At the end, the system of Pluto (Brozovic 2015) contains only 3 satellites
which may be considered regular (Charon, Nix, Hydra). They support a
rough TBR under numbers 1, 3, and 4, shown in A25 by dashed line and
ignored. The adopted here accurate TBR assigns satellite numbers 1, 4, and
5, respectively (#25, A25). (The rotational period of Pluto and the orbital
period of the closest satellite Charon are synchronized.)

The TBRs of the moon systems of the solar planets (Table 3) occur typ-
ically more accurate than the main TBRs of the planetary systems (Table
2). Only the main TBR for the moons of Saturn within standard error 11.9
% is relatively rough.

The TBRs of the small satellites are well pronounced, but their gradients
are 2-4 times less then the gradients of the TBRs for the regular moons.

5. Correlations between TBR parameters and physical
parameters of orbital systems

Hereafter we compare the geometrical parameters of the TBRs – gradient
G = log PC (Eq.3) and separability S = log L/N (Eq.4), with the physi-
cal parameters of the orbital systems – mass of the central body, log M0,
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total mass of the orbiting bodies, log MS and, for planetary systems only,
metallicity of the star [Fe/H]. The sources of data are Table 2 and Table 3.

Appendix B contains diagrams B1-B10, which juxtapose parameters of
the planetary systems only (#1-#18), as well as diagrams B11-B16 which
juxtapose the parameters of satellite systems, together with the parameters
of planetary systems. Diagrams B9 and B10 are shown in large format as
Fig. 4 and Fig. 5. Diagrams B15 and B16 are shown in large format as
Fig. 6 and Fig. 7.

The points in the diagrams represent different data, as follows: dots
(1) – main TGRs for planetary systems, circles (2) – alternative TBRs for
planetary systems, filled squares (3) – main TBR for Solar System with
4 Terrestrial Planets only, open squares (4) – alternative TBR for Solar
System with 4 Terrestrial Planets only, filled triangles (5) – main (unique)
TBRs for the regular moons of solar planets, open triangles (6) – alternative
TBR for the regular moons of Saturn only, (7) – main (unique) TBRs of
the inner small satellites of solar planets. The dots (1) and filled squares (3)
are used also for juxtaposition of physical parameters in the diagrams B1,
B3, B5 and B11 for planetary systems and Solar System with 4 Terrestrial
Planets only.

The parameters of the main TBRs show better pronounced correlations
than the parameters of the alternative TBRs and the last mentioned are
not especially commented furthermore. Error bars of the gradients of the
main TBRs are shown in the diagram B2 for planetary systems, in B15
(Fig. 6) for regular moons and B16 (Fig. 7) for inner small satellites.

5.1. Correlations for 18 planetary systems

Diagrams B1-B10 represent correlations for 17 exoplanet systems (#1-#17)
plus Solar System with 8 planets (#18). The numbers of the points cor-
respond to the numbers of the orbital systems in Table 2. The solid lines
represents fits over the data, shown by dots, while the dashed lines represent
fits over the data, shown by circles. Solar System with 4 Terrestrial planets
only (#19) is not used for the fits. The correlations are characterized in
Table 4 and compared in Fig. 3.

We concentrate on the correlations for the planetary systems, based on
the parameters of their main TBRs. The fits (linear regressions) in the di-
agrams have the common form

(8) y = y0 +B.x

with standard error of the regression σy and standard error of the slope
coefficient σB.

The significance of the slope coefficient B is characterized by the Stu-
dent test parameter T :

(9) T = |B|/σB.

Large value of T corresponds to statistically significant difference between
—B— and 0. For our 18 points the 99 % confidence level is overcome by
T > 0.95.
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Table 4. Table 4. Statistical parameters of the solid regression lines of the correlations
in diagrams B1-B10 for the planetary systems. (See the text)

# Parameterss Diagram σy C B B/σB

1 M0 −MS B1 0.967 0.431 1.504 1.91
2 MS −G B2 0.051 0.363 0.018 1.56
3 [Fe/H]-MS B3 0.921 0.512 2.217 2.39
4 [Fe/H]-G B4 0.052 0.237 0.052 0.98
5 [Fe/H]-M0 B5 0.301 0.186 0.231 0.76
6 [Fe/H]-S B6 0.170 0.479 0.358 2.18
7 M0 −G B7 0.050 0.384 0.068 1.66
8 M0 − S B8 0.032 0.250 0.151 1.03
9 S −G B9 0.038 0.724 0.214 4.20
10 MS − S B10 0.250 0.623 0.107 3.18

The closeness between the general behavior of x and y values is char-
acterized generally by the Pearson’s correlation coefficient C. If —C— is
close to 1, the correlation may be considered as dependence.

Table 4 contains the basic parameters of the fits for the planetary sys-
tems, concerning the main TBLs only: standard error of the fit σy, corre-
lation coefficient C, slope coefficient of the fit B and test parameter B/σB
(Eq.9).

Figure 3 represents comparison between the values of C and T , col-
lected in Table 4. It elucidates at least two important particularities of the
regarded correlations.

First, all correlations in the diagrams B1-B10 are positive. The TBR
parameters G and S increase with the increase of the physical parameters
log M0, log MS , and [Fe/H]. Also, the values of log M0 and log MS increase
with the increase of [Fe/H]. By these mutual correlations, represented as
planes, f.e. G = F ([Fe/H], log MS), tested by us, have not significantly
lower standard errors in comparison with the linear fits, f.e. G = F (log
MS) (Diagram B2).

Second, because of their high values of T the majority of the correlations
may be considered as dependences. However, while the slope parameter T
overcomes significantly the level of 99 % confidence probability, the respec-
tive correlation coefficient C is relatively low for the majority of the corre-
lations. The imperfect data about the exoplanet systems influence surely,
but the main reason for this discrepancy seems to be other. In statistics the
parameters T and C are defined for normally distributed random variables.
However, our 5 regarded parameters, as well as the residual deviations from
the fits, have nearly flat distributions. For these reasons the values of C be-
comes relatively low, while the values of T become relatively high. Therefore
we may call ”dependences” only well-pronounced correlations, such as S –
B (B9; Fig. 4) and log MS – S (B10; Fig. 5).

Figure 4 shows dependence between the geometrical parameters of the
main TBRs – separability S and gradient G. Such dependence is poorly
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Fig. 3. Dependence between the correlation coefficient C and the significance parameter
T (Eq.9) for the main TBRs of the planetary systems (Table 4). The horizontal dashed
line shows the level of 99 % significance of the slope coefficient.

pronounced for the alternative TBRs. Otherwise, the gradient correlates
well with log MS and [Fe/H] (Diagram B2 and B4).

Figure 5 shows that the separability S of the main and alternative
TBRs depends on the total mass of the planets, log MS . Otherwise, the
separability correlates with M0 and [Fe/H] (Diagrams B8 and B6).

Diagram B1 and B3 show other remarkable correlations: log M0 – log
MS and [Fe/H] - log MS . Diagrams B4 and B6 give evidences that the
metallicity [Fe/H] influences also G and S. Generally, the metallicity of the
star seems to be significant parameter of the structure of the orbital system.

Diagrams B1-B10 show that a Solar System with 4 Terrestrial Planets
only (#19), differs slightly from the planetary systems by gradient G and
separability S, but, naturally, differs significantly by massMS (B1, B3). The
position of such reduced Solar System gives evidence of possible deficiency
of exoplanets which are distant from their stars. Practically, the discovery
of such exoplanets is difficult because their gravitational influence on the
star may be too faint or because their transits in front of the star may be
too rare.

We note that some exoplanet systems, seeming to be unique, affect sig-
nificantly the correlations. System TRAPPIST-1 (#9 in Table 2), having
extremely small masses M0 and MS , is important in diagram B1, but it
shifts the fits in diagrams B3 and B5 downwards. System Gliese-676 (#13),
having extremely high separability (L/N = 21/4), obviously increases the
regression slopes and significances of diagrams B6 and B8. Other such ex-
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Fig. 4. Dependence between the separability parameter S and the gradientG for the main
TBRs (dots, solid line; short dashed line shows the reverce regression) and correlation
between S and G of the alternative TBRs (circles, dashed line). Data about 18 planetary
systems are used. (See Table 4.)

amples are 55 Cns (#11) on diagrams B2 and B10 (Fig. 5), as well as
Kepler-62 (#16) on diagrams B2 and B4.

Generally, it is not sure whether we have to observe more close correla-
tions, but the choice of one optimal TBR numbering must give more sure
results.

Other physical parameters, based on the masses Mi, orbital periods Pi,
major semi-axes Ai and linear velocities Vi of the exoplanets, were also
tested for correlations. The parameters ΣMi.AI and ΣMi.PI , as well as
their weighted by MS versions, correlated with G like MS . The parameters
ΣMi.A

2

I and log M0/Ms occur useless.

5.2. Correlations for satellite systems together with planetary
systems

Diagrams B11-B16 show correlations for 9 satellite systems (#21-#29, Ta-
ble 3), plus Solar Systems with 4 Jovian planets only (#20, Table 2), ex-
tended by 18 planetary systems (#1-#18, Table 2). The dots (1) and circles
(2) correspond to planetary systems, fitted by dashed lines. The triangles
(2) correspond to systems of regular moons of solar planets plus Solar Sys-
tem with 4 Jovian Planets only, fitted by solid lines. The small dots (3)
correspond to systems of inner small satellites of the Jovian Planets, fitted
(sometimes) by short dashed lines. The numbers of the points in the dia-
grams correspond to the systems #20-#29 in Table 3. The open triangle
in Fig. 6 and Fig. 7 (Diagrams 15 and 16), show the position of the Saturn
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Fig. 5. Dependences of the separability parameter S (Eq.4) on the total mass of the
planets, log MS , for the main TBRs (dots, solid line) and for the alternative TBRs
(circles, dashed line) for 18 planetary systems. (See Table 4.)

system according with its alternative TBR (Saturn 2, Table 3). The error
bars of the gradients are shown in Fig. 6 and Fig. 7.

Diagram B11 show dependence of the total mass of the orbiting bodies
on the mass of the central body. Diagram B12 shows single dependences be-
tween separability S and gradient G for the systems of planets and systems
of regular moons. Dependences in the diagrams B11 and B12 are expected.
However, in Diagrams 13 and 14 the correlations of S on M0 and MS are
away.

Figure 6 (B15) shows common dependence of the TBR gradient G on
the mass of the central body, log M0. The dependence is fitted by line over
8 magnitudes of M0. This dependence may be non-linear, but the number
of the systems of regular planetary moons is small for sure conclusion.

Figure 7 (B16) shows a remarkable unique large dependence, logMS -G,
enveloping systems of planets, systems of regular moons of Jovian planets
plus Pluto, as well as systems of small inner satellites of the Jovian Planets.
The dependence is fitted by 3-rd order polynomial over 10 magnitudes of
MS .

In all diagrams (without B12) the ranges of the physical parameters
of the orbital systems are very large. Unfortunately, in these diagrams the
ranges of M0 and MS for the exoplanet systems are small.

6. Conclusions

In the present paper an objective method for numbering of the orbital
periods and building of optimal TBRs (Sections 2, 3) is applied for 30
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Fig. 6. Large range dependence of the TBR gradient G on the mass of the central body,
log M0. Dashed lines present linear fits for the planetary systems (dots and circles). Solid
line shows the fit for the systems of the regular planetary moons (triangles).

Fig. 7. Large range dependence of the the TBR gradient G on the total mass of the
orbiting bodies, log MS . Dashed lines present linear fits for the planetary systems (dots
and circles). Solid line shows the fit for the systems of the regular planetary moons
(triangles). Short-dashed curve presents 3-rd order polynomial fit for all orbital systems.

orbital systems (Section 4). The method is an improved version of that
used earlier (Georgiev 2016). The results are as follows.
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Main and alternative TBRs are revealed in all planetary systems, as
well as in the complicated system of regular moons of Saturn. Only main
TBRs are found for the systems of the regular moons of Jupiter, Uranus,
Neptune and Pluto, as well as for the small inner satellites of the Jovian
Planets (Sections 3, 4).

In the systems of solar planets and regular planetary moons the rota-
tional period of the central body supports approximately the TBR under
number n = 0. In contrast, in all 8 exoplanet systems with available rota-
tional period of the star, this rotational period stands arbitrary high among
the orbital periods of the exoplanets (Appendix A). While these stars are
similar to the Sun, from the point of view of the TBRs the rotation of the
Sun seems too slow and bounded by the orbital periods of the solar planets.

Two geometrical parameters of the TBR, gradient (Eq. 3) and separa-
bility (Eq. 4), are compared with three physical parameters of the orbital
systems, mass of the central body, total mass of the orbiting bodies and
(for exoplanet systems only) metallicity of the star. Positive mutual corre-
lations in each of the 10 pairs of these 5 parameters are revealed (Table 4,
Appendix B, Fig. 3, 4, 5).

The pairs of parameters separability – gradient (Fig. 4), total mass of
the exoplanets – separability (Fig. 5) and metallicity of the star – total
mass of the exoplanets (Diagram B3) show the best correlations for the
planetary systems.

The metallicity of the star and the total mass of the orbiting bodies
seem to be significant parameters for the geometry of the TBR. However,
the author can not propose any explanation of this fact.

Each of the regarded 4 versions of Solar System, with 6 planets (Fig. 1),
with 8 planets, with 4 Terrestrial Planets only or with 4 Jovian planets only,
is similar by its TBR parameters to the exoplanet systems, regarded here.

The next task seems to be classification of the orbital systems, based
on the morphology of their TBR error curves, as well as corresponding of
the minima of the error curves and 3:2, 2:1, 5:2, etc., harmonic resonances
of the orbital periods.
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Appendix A. Main and alternative TBRs (See Section 4)
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Appendix A. Continuation



Titius-Bode law and parameters of orbital systems 43

Appendix A. Continuation
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Appendix B. Correlations between parameters of TBRs and
parameters of orbital systems (See Section 5).
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Appendix B. Continuation


