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Abstract. Near-commensurability of the orbital sizes or periods exists in the Solar
system for the massive planets and the massive satellites of Jupiter, Saturn and Uranus.
It is well revealed by the Titius-Bode law (TBL) long ago by Dermott (1968), but is
not been explained convincingly yet. Independently on this fact, the question about the
dependence of the scale constant of the TBL on the mass of the central body is open.
In this paper we show such a dependence. Due to the dynamic evolution the orbits of
the massive planets and satellites may be in a transient stage when a primary TBL is
well pronounced. Simultaneously a secondary TBL, a trail from the past as a hint for the
future, may be less pronounced. The TBL is fitted after the numeration of the objects.
For this reason we derive a special “error curve” and we use 2 its minimums to introduce
a primary and a secondary numeration for the objects. Thus we derive constants of 2
TBLs and build the searched dependence by twice as many points. In this paper we show
and use pairs of TBLs for the satellite systems of Jupiter, Saturn, Uranus, Neptune and
Pluto, as well as for the solar system in two cases – with 4 massive planets and with 8
massive planets. In fig. 10 we show the statistically significant dependences where the
coefficient of the near-commensurability for the orbital sizes varies from about 1.3 for the
satellites of Pluto to about 1.7 for the planets of the Sun.
Key words: Solar system: general – Solar system: structure

1.Introduction

For a long time now it has been recognized that the distribution of the
orbit sizes of the solar planets and the planet satellites is non-random but
near-commensurable. The orbit sizes (or periods) follow approximate power
relations, known today as the Titius-Bode law (TBL, Eq. 2 and Eq. 3).
Maybe it is not possible today to conclude with certainty that the TBL type
relations are, or are not, significant, but the question about the physical
explanation remains open. Still, the existence of TBL type relations give
evidence about the combination of influences which has been formed during
the past and continue to form the system of orbits in the Solar System
(Dubrulle & Graner, 1994; Murray & Dermott, 1999; Lynch, 2003).

The contemporary theoretic considerations and computer simulations
have shown that the orbital resonances of the giant planets create in the
plane of the Solar system wide concentric rings where stable orbits may exist
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over long periods of time. It is clear also the TBL may be a result of the
collapse of the rotating proto-planetary cloud with its axial symmetry and
exponentially decreasing density in radial direction (Dubrulle & Graner,
1994; Kotliarov, 2008; Bovaird & Lineweaver, 2013).

Although deep analysis and deduction by theoretical reasons is missing,
the TBL begins to play a new role. Today it is used for analyzing exo-
planet systems and forecasting exoplanets which have not been observed
yet (Poveda & Laram 2008; Bovaird & Lineweaver, 2013). The last being
mentioned, astronomers performed TBL analysis of 68 multiple-exoplanet
systems containing at least 4 objects and predicted 141 suitable orbits for
exoplanets, 73 from interpolation, 68 from extrapolation.

Since the physical origin of the Titius-Bode relation has not been fully
understood yet, we must ask whether the constant of the near-commensura-
bility depends on the mass of the central body. The TBLs, derived long ago
by Dermott (1968), show an increase of this constant using data from the
satellites of Uranus throughout the satellites of Jupiter and the planets of
the Sun. However, this constant for the satellites of Saturn is too small and
it does not support such a trend.

Still, the dynamical evolution of every system of orbits causes changes
of the system and we consider that every orbital system may always be
in a transient epoch. Therefore, we must account not only for one optimal
TBL, but for at least two, primary and secondary. We consider that the
secondary TBL is a former or a future primary TBL. In this paper we find
a poorly pronounced secondary TBL of the system of Saturn, which makes
it compatible with the system of Jupiter. Furthermore, we build TBLs for
the system of Neptune, which occurs to be compatible with the system of
Uranus. We build also TBLs for the satellite system of Pluto and TBLs for
the solar planet system. The resulting correlations, which are claimed in the
title of this paper, are shown in Fig. 10.

In this paper Section 2 represents the historic Titius-Bode rule and its
contemporary form, known as Titius-Bode law. Section 3 represents the
method for objective numbering of the planets of the satellites for deriving
primary and secondary TBLs. Section 4 represents the result based on the
satellite systems of Jupiter, Saturn, Uranus, Neptune and Pluto, as well as
on the Solar system in two cases: based on 4 regular planets or on 8 regular
planets. Section 5 represents the result and Section 6 gives a summary of
the presented work.

This investigation is based on contemporary data about orbital periods
of 5 systems of planet satellites (Table 1, Sheppard, 2014), as well as of 8
large planets plus 9 dwarf planets (Table 2, Brown, 2012).

2. Titius-Bode Rule (TBR) and Titius-Bode Law (TBL)

The near-regularity of the planet orbits has been established initially by
Johannes Titius ,Wittenberg, 1766. Later this fact has been confirmed and
widely popularized by Johannes Bode, Berlin, 1772. Today this result is
known as the Titus–Bode Rule (TBR): When the semi-major axis of the
planetary orbit A is expressed in astronomical units (AU; 1 AU = 149.6×106

km), then the TBR predicts A′ by the relation
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(1) A′ = 0.4 + 0.3× 2k.

Here the experimentally adopted constants correspond approximately
to the size of the Mercury orbit (0.4 AU) and to the difference between the
sizes of the Venus and Mercury orbits (0.3 AU). The power number k takes
special values: −∞ for Mercury, 0 for Venus, 1 for Earth, 2 for Mars, 4 for
Jupiter and 5 for the last planet known at that time, Saturn.

Later, the orbit of Uranus, discovered by William Hershel, London, 1781,
has confirmed the TBR for k = 6 and this fact has stimulated the further
searches of planets. The vacancy between Mars and Jupiter for k=3 has
been fulfilled by the asteroid Ceres, discovered by Giuseppe Piazzi, Palermo,
1801. However, the size of the orbit of Neptune, discovered by Johann Galle,
Berlin, 1846, approves of 77 % of the TBR prediction for k=7. Further, the
size of the orbit of Pluto, discovered by Clyde Tombaugh, Lowell Obser-
vatory, Arizona, 1930, approves of 61 % of the TBR prediction for k=8.
Finally, the TBR has been rendered wrong.

The contemporary TBL for the semi-major axes of the orbits A has
power or linear forms:

(2) An = A1 × (AC)
n or Bn = B1 +BC × n.

Here the numbers n (n = 1, 2, . . . , N ) belong to a preliminary adopted
integer numeration of the objects and Bn =log An, while the intercept con-
stant B1 =log A1 and the slope constant BC=log AC have to be determined
for every system of orbits. In (Eq. 2). A1 and B1 correspond to the first ob-
ject in the system, while AC means the coefficient of near-commensurability
in the linear scale and BC denotes the step of near-equidistantly spacing in
the logarithmic scale.

The accuracy of a TBL in the logarithmic scale may be characterized
by the (sample) standard error σ (log A). It is a small positive quantity.
In the linear scale the respective relative value, dex[σ(log A)], is a positive
quantity slightly greater than 1. Therefore, the accuracy of the TBL may
be expressed by its relative standard error, expressed illustratively in per-
centage:

(3) σR(A)[%] = [10σ(logA)
− 1]× 100.

Figure 1a represents a comparison between the TBR predicted semi-
major axis A′ (Eq. 1) and the real A in log-log coordinates. The traditional
numeration of the planets, including Ceres, is implemented (see also Table
2). This regression has a very low standard error σ(log A) = 0.012 and
respectively a relative error in the linear scale σR(A) = 2.8 %. So, in spite
of the rough constant values in (Eq. 1), TBR poses very high accuracy for
the first 8 planets (including Ceres and Pluto). The TBR is correct only in
this case and today this fact is considered an accident.

Figure 1b represents the TBLs (Eq.2) as linear regressions of log A over
n. The regressions are derived for 8 of the solar planets together, as well as
for 4 planets of the Earth group or for the 4 giant planets, separately. The
regression errors are implemented. While the relative error for all 8 planets
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is 14.5 %, for the two planet group separately it is about 1.5 times smaller
(10 % and 9.6 %, respectively). TBL for all 8 planets is described better by
2nd order regression with relative error of 11.4 % (as shown). Generally, the
two groups of solar planets may be distinguished even in the diagram of the
TBL by their different coefficients AC . More details are given by Graner &
Dubrulle (1994).

The semi-major axis A and the orbital periods P are related by Kepler’s
3rd law: A ∝ P 2/3 or ∆ logA = 2/3 ×∆ log P . By this reason the TBL
may be rewritten for periods P too. All contemporary applications of the
TBL are based on orbital periods P , because (i) the orbital periods of the
planet satellite are primary and accurately derived data items and (ii) the
rotational period of the central body supports such kind of TBL (Dermott,
1968).

Fig. 1. (a) Original TBR in log-log coordinates. The line represents the regression of the
real semi-major axes A over the TBR predicted ones A′ (Eq. 1) for 8 planets (including
Ceres). The real positions of Neptune and Pluto are presented by asterisks. (b) Con-
temporary TBL. The line represents the regressions of log A over the traditional orbital
number n for the 8 regular planets together, without Ceres and Pluto (dashed line), as
well as for the 4 large and for the 4 giant planets separately (solid lines). The positions of
Ceres and Pluto are presented by asterisks. The position of Neptune and Pluto, predicted
by the TBR, are represented by triangles.

The TBL written for the orbital periods P has power or logarithmic
form:

(4) Pn = P0 × (PC)
n or Qn = Q0 +QC × n.

Here the numbers n (n = 0, 1, 2, . . . , N − 1) correspond to the prelim-
inary adopted numeration of the objects, where number 0 is attached to
the central body and Qn = log Pn. The meaning of the constants Q0 = log
P0 and QC = log PC is analogous to the respective constants in (Eq. 2).
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However, here P0 corresponds to the rotational period of the central body.
Then the respective semi-major axis of this “zero orbit” may be derived by
the 3rd Kepler’s law. For building the TBL the parameters Q0 and QC have
to be determined in every separate case. Because of the logarithmic forms of
the TBL, written for A or for P , the relative regression errors in the linear
scales are the same σR(P ) = σR(A).

The range and the appearance of the TBL depend crucially on the choice
of the objects and the role of their numbers. Two curious examples follow.

Figure 2a shows TBL for a list of solar planets supplemented by Ceres,
Pluto and the Sun (with its rotational period, as the object with number
n=0). Two distant dwarf planets are added too: Eris, as the most massive
and very distant plutoid, as well as Sedna, as the most distant and a massive
enough plutoid. The range of the TBL here is 4 magnitudes by P , with a
constant PC=2.23 (corresponding to AC=1.71) and a large error σR(P ) =
24.5 %.

Special form of the TBL for the solar planets has been proposed af-
ter analysis of the resonances in the planet periods by Carrey (1988). The
“Carey’s law” takes as base the orbital period of Jupiter, Jupiter’s year, PJ ,
and assigns the number n=0 to Jupiter. The orbital periods of the more
distant planets, with numbers 0, 1, 2, . . . , 6, are given in Jupiter years [JY]
as P ′

n = 3 ×PJ × 22n−1. Here the periods of the used planets, from Jupiter
till Sedna,are 1, 3, 6, 12, 24, 48, 96 JY. The orbital periods of the closer
planets, with numbers 0, -1, -2, -3,. . . , -6 are given in Jupiter years [JY] as

P ′

n = 3 ×PJ × 2−(n−1). Here the periods of the used planets, from Jupiter
till the Sun, are 1, 1/3, 1/6, 1/12, 1/24, 1/48, 1/96 JY.

Figure 2b shows the “Carey law” as a kind of TBL. In this case the
relative error of the prediction of log P through log P ′ is σR = 16.3 %,
about 1.5 times better than in Fig.2a. Like in the case of TBR (Eq. 1a.) the
constants PC or/and AC can’t be derived. The reasons for the large-scale
near-commensurabilities, shown in Figs.2a dn 2b, have not been explained
yet.

3. The method of optimal numbering of the orbital periods

This study, as well as all previous such ones, are based on “regular” planets
or satellites. These objects must be preliminary selected and numbered.

While it is considered that in every case the TBL reflects the current
result of the formation and evolution of the system, the TBL constants
must be derived from "regular objects". These objects have large masses,
as well as near-complanare with an equator of the central body and near-
round orbits. Satellites and planets that are used here as regular objects
are noted in Tables 1 and 2 by asterisks. Other significant distant objects,
massive enough, even irregular are to be used here together with the regular
ones as "all objects" for checking whether they support the TBL derived
by the regular objects. Among irregular objects in Table 1 and 2 there are
objects the orbits of which have high inclinations and high eccentricities,
even objects with retrograde orbiting. Many other objects seem to be too
small and they are to be neglected here.
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Fig. 2. Regression lines for of the TBL (a) and “Carey’s law” (b) for the orbital periods of
13 objects of the Solar system (dots), were the Sun (with its rotating period) is included
with n=0. The position of the Sun if its with preliminary givennumber isn=-1 is shown
by circle.

Sometimes the requirement about regularity of the main objects is im-
practicable. One example is that the orbits of the 8 large solar planets
are mutually near-complanare, but they are all significantly inclined with
respect to the plane of the solar equator. We are forced to neglect this cir-
cumstance. Another example is that the Neptune satellite system is very
poor and a direct building of a TBL is impossible. However, all relatively
large retrograde satellites of Jupiter, Saturn and Uranus support the re-
spective TBLs. Then including the retrograde satellite Triton we derive a
TBL for Neptune system which is compatible with that of Uranus. A third
example is the dwarf planet Pluto. It seems too small in comparison with
the giant planets, however, the satellite system of Pluto follows well the
TBL and supports well the general dependence, shown in Fig. 10.

The deriving of the constants of the TBL (4) depends significantly on
the preliminary numeration of the objects. The examples in Fig. 1 and Fig.
2 show simple order numerations. One objective method for numeration is
applied in the classic work of Dermott (1968). He built regressions of the
type n = a× log P + b for regular objects, deriving an optimal (integer)
numeration for the regular objects and for the vacancies in between. This
method is applied for the satellite systems of Jupiter, Saturn, Uranus and
the planet system of the Sun. Thereby the problems about the application
of the TBL appear to almost become closed. However, recently Bovaird &
Lineweaver (2013) applied a χ2 based method for optimal numeration of
the members of exoplanet systems and revealing of vacancies among the
exoplanets. In the presented work another approach to optimal numbering
of the objects is applied. It is able to give many numerations, but here only
“primary” and “secondary” such ones are used for deriving of “primary” and
“secondary” TBL.

Let us have a few regular objects with orbital periods Pn(n = 0, 1, . . . , N− 1).
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The computer program scans possible interval of step constants QC , i.e. 0.1
< QC < 0.6, with a small step, typically 0.001. For each checked value QC
and for each object with number n the program derives a floating point
"number" µn = (Pn − P0)/QC , the nearest to µn integer number mn and
the deviations ∆µn = µn˘mn. Further the program derives for each QC the
mean square deviation E′(QC) = (

∑
∆µ−n2)/N and finds the mean value

of these deviations <E′(QC)> over all QC .
Finally, the program outputs the normalized "error curve" E(QC) =

E′(QC)/ < E′ > with mean value equals to 1. The position of the two
deepest minimum QC1 and QC2 of the error curve E(QC) are considered as
approximate primary and secondary step constants, that define the primary
and secondary numerations M1 and M2. The regressions of the type (Eq.
4), based on the numerations M1 and M2 for regular objects (plus central
body), give the accurate constants of the primary and secondary TBLs. The
applications follow.

4. TBLs for satellites of the planets and for planets of the
Sun

We applied the described method for optimal numbering on the satellite
systems of Jupiter, Saturn, Uranus, Neptune and Pluto as well as twice on
the solar planet system.

The results are presented in Fig. 3 – 9. The primary TBLs for the systems
of Jupiter, Saturn and Uranus coincide with these described by Dermott
(1968). The TBLs for the systems of Neptune and Pluto are added. The
Solar System is the most complicated case and it is regarded in the end.
Basic data about the satellites and the planets is given in Table 1 and Table
2.

The left panels of Fig. 3 – 9 show two error curves: E(QC)(QC = logPC),
solid curves, derived through the regular objects and E(QC), dashed curves,
derived through all objects. The objects which are considered to be regular
are marked in Table1 and Table 2 by asterisks.

The deepest minimums of the error curves E(QC) for the regular objects
with positions QC1 and Q2 are considered here to be primary and secondary
minimums. Other minimums, at ≈ 0.5 × QC1 or ≈ 0.5 × QC2, are ignored
as “undertones”. The deepness D1 or D2 of the minimums, as well as half
the width and half the minimums W1 or W2, are determined visually and
included in Table 3. The values of QC1 and QC2 are used by the computer
program to give respective optimal numerations M1 and M2, shown in the
last columns of Table 1 and Table 2.

Further these numerations are used for deriving TBL regressions of the
type (Eq. 4). Their (sample) standard deviations σ1 and σ2 are given in
Table 3. The slope coefficients of these regressions as the the accurate values
of step constants QC1 and QC2 are marked by vertical lines on Fig. 3a – 9a.
On the basis of these values other constants, PC1 and PC2, BC1 and BC2

,
as well as AC1 and AC2 (see Eq. 2 and 4), are derived and included in Table
4. The relative errors of the TBLs, σR1 and σR2 (see Eq. 3), are given in
Table 4 too.



10 Ts. B. Georgiev

The right panels of Fig. 3 – 9 show TBLs over the primary and secondary
numerations, M1 and M2, corresponding to the steps QC1 and QC2. The
names of the objects and their numerations are implemented in the figures.
In both cases the regression lines (solid and dashed, respectively) are built
over the regular objects and prolonged to the edge objects. The presentation
of the primary TBL corresponds to the abscissa numbers “m”. For better
illustration the position of the objects and their regression for the secondary
TBL are shifted horizontally by -1 if Q2 > QC1, with abscissa ım− 1 or by
+1 if QC2 < QC1 , with abscissa ım+ 1.

Jupiter system is presented in Fig. 3. This is the best example of near-
commensurability in the Solar system. The Galilean satellites dominate in
the Jupiter system and follow orbital period relations 1:2:4:≈8. Therefore,
we must expect optimal step Q ≈ log 2 = 0.301. However, we include the
rotating Jupiter as an additional object with number n = 0 and we find
QC1=0.32 and QC2 =0.20. The minimums at Qc = 0.16 others left-situated
ones are “undertones”. Note that the primary minimum of E(QC), found by
the 4 large Gallilean satellites, is not supported well by all objects (dashed
curve). Otherwise, like in all such studies, the primary TBL the Galilean
satellites occupy their usual numbers of orbital periods (and semi-major
axis) 2, 3, 4 and 5. In both cases Amalthea takes m=0, like Jupiter and
Thebe takes m=1. These two inner satellites support the TBLs. Three va-
cancies occur after m=5. Two groups of relatively large distant satellites
(one triad of irregular satellites and one triad of retrograde irregular satel-
lites) take two distant orbital numbers. They support well both TBLs.

Fig. 3. Jupiter plus 4 regular satellites or plus all 12 significant satellites. See Table 1, 3,
4 and text. (a) Error curves E(QC) for regular objects (solid curve) and for all objects
(dashed curve). The positions of their primary (QC1) and secondary (QC2) minimums, for
regular object, are marked by vertical lines. (b) TBL regressions for the regular objects
(circles) by use of primary (M1, solid line) and secondary (M2), dashed line) numerations,
prolonged to the end edge objects. The secondary TBL is shifted horizontally to the right
by +1.
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Fig. 4. Saturn plus 7 regular satellites or plus all 11 significant satellites. See Fig.3, Table
1, 3,4 and text. The secondary TBL is shifted horizontally to the left by -1.

Fig. 5. Uranus plus 5 regular satellites or plus all 8 significant satellites. See Fig. 3, Table
1, 3, 4 and text. The secondary TBL is shifted horizontally to the right by +1.

Saturn system is presented in Fig.4. The scatter of the error curve E(QC)
is less than in the previous case because of the larger number of regular ob-
jects. Here the near-commensurability of the satellite orbits is supported
by 7 regular satellites with QC1=0.17 and QC2 =0.26. Two vacancies occur
among the regular satellites in the primary TBL and one in the secondary. In
the secondary numeration Mimas, Epimethius and Janus take m=1, Ence-
ladus and Tetis take m=2, while Titan and Hyperion take m=6. Both TBLs
are supported well by all used satellites. Only 2 irregular distant satellites
are remarkable here - Japetus and (retrograde) Phoebe, which support well
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Fig. 6. Neptune plus 3 “regular” satellites or plus all 5 significant satellites. See Fig. 3,
Table 1, 3, 4 and text. The secondary TBL is shifted horizontally to the right by +1.

the TBLs. In the system of Saturn the primary TBL corresponds to a very
small (logarithmic) step QC1 and this fact has been obstructive for finding
the dependence of the TBL step on the mass of the central body. However,
the poorly pronounced secondary minimum at QC2, elucidated here, softens
this circumstance.

Uranus system is presented in Fig. 5. Here the near-commensurability
is supported by 5 regular satellites. Like in the system of Jupiter, primary
and secondary minimums of E(QC) are well pronounced, here at QC1=0.23
and QC2 =0.19. The inner satellite Puck take m=0, like Uranus. In the
secondary TBLs one vacancy between Umbriel and Titania appears. Two
distant satellites, both irregular and retrograde, support well the TBLs.

Neptune system is presented in Fig. 6. Here the regularity appears from
3 satellites, which include the large retrograde satellite Triton. We find
QC1=0.26 and QC2 =0.18. Two distant satellites, both irregular and ret-
rograde, support well the TBLs. So, the TBLs of Neptune seems to be
compatible with these of Uranus. Two distant satellites support well the
TBLs.

Pluto system is presented in Fig. 7. Here the regularity appears again
from 3 satellites, but the orbital period of the largest of them, Charon,
is equal to the rotating period of Pluto. We found two deep minimums
at QC1=0.20 and QC2 =0.10. All known satellites support perfectly the
secondary TBL. The system of Pluto occurs crucial for the correlations,
shown in Fig. 10.

Solar planet system occurs more complicate than the satellite systems of
the planets. Therefore, following the already applied logic, we regard firstly
the case with only 4 regular planets (the giant ones), and secondly – the
case with all 8 large planets.

Solar system with 4 regular planets, gas giants, is presented in Fig.8. We
derive QC1=0.37 with AC = 1.79 and QC2 =0.43 with AC = 1.93 (Table
4).Note that like in the case of Jupiter, the primary minimum of E(QC),
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Fig. 7. Pluto plus 3 “regular” satellites or plus all 5 significant satellites. See Fig. 3, Table
1, 3, 4 and text. The secondary TBL is shifted horizontally to the right by +1.

Fig. 8. Sun plus 4 regular planets (giant planets only) or plus 17 planets and dwarf
planets. See Fig. 2, Table 2, 3,4 and the text. The secondary TBL is shifted horizontally
to the left by -1. The numbers of Neptune, Haumea and Eris correspond to more than
one object. See Table 2, columns M1 and M2.

found by 4 giant planets, is not supported by all objects (dashed curve). In
the primary TBL the Earth and Venus take m=3, while m=2 corresponds to
a vacancy. Then Neptune, Orcus and Pluto take m=9 and 5 other plutoids
take m=10 (Table 2, column M1). In the secondary TBL the Earth and Mars
take m=3 with no vacancies around them. Then Neptune and 5 plutoids
take m=8 and 2 other plutoids take m=9 (Table 2, column M2). In both
cases Sedna has a very distant and solitary objects.

Solar system with 8 regular planets is presented in Fig. 9. We derive
QC3=0.24 with AC=1.44 and QC4=0.28 with AC=1.54. Here the primary
and secondary minimum of E(Qc), found by 8 regular planets (solid curve),
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Table 1. Basic data about the used satellites of planets from Sheppard (2014): D – di-
ameter in km; P – orbital period in days; i - orbital inclination in respectto the equatorial
plane of the planet; e –orbital eccentricity; M1 and M2 – nume-rations with respect to the
primary and secondary minimum of the error curve E(Q). Satellites accepted as regular
are underlined. Retrograde periods of satellites are marked by “-“.

Label Name D[km] P [d] i[o] e M1 M2

Jupiter system
1 V Amalthea 167 0.479 0.374 .0032 0 0
2 XIV Thebe 98 0.706 1.076 .0175 1 1
3 I *Io 3660 1.769 0.050 .0041 2 3
4 II *Europa 3122 3.551 0.471 .0094 3 5
5 III *Ganymede 5262 7.155 0.204 .0011 4 6
6 IV *Callisto 4820 16.689 0.205 .0074 5 8
7 VI Himalia 170 250.23 30.486 .1513 9 14
8 X Lysithea 36 259.89 27.006 .1322 9 14
9 VII Elara 86 257.62 29.691 .1948 9 14
10 XI Carme 46 -763.95 165.047 .2342 10 16
11 VIII Pasiphae 60 -739.80 141.80 .3743 10 16
12 IX Sinope 38 -739.33 153.778 .2750 10 16

Sarurn system
1 XI Epimetheus 116 +0.694 0.335 .0098 1 1
2 X Janus 179 +0.695 0.165 .0068 1 1
3 I *Mimas 396 +0.942 1.566 .0202 1 2
4 II *Enceladus 504 +1.370 0.010 .0047 2 3
5 III *Tethys 1062 +1.888 0.168 .0001 2 4
6 IV *Dione 1123 +2.737 0.002 .0022 3 5
7 V *Rhea 1527 +4.518 0.327 .0013 4 6
8 VI *Titan 5151 +15.945 0.348 .0288 6 9
9 VII *Hyperion 270 +21.277 0.568 .1231 6 10
10 VIII Iapetus 1469 +79.322 15.47 .0286 8 13
11 IX Phoebe 213 -545.09 173.047 .1562 11 18

Uranus system
1 XV Puck 162 0.762 0.319 .0001 0 0
2 V *Miranda 471 1.414 4.232 .0013 1 2
3 I *Ariel 1158 2.520 0.260 .0012 2 3
4 II *Umbriel 1169 4.144 0.205 .0039 3 4
5 III *Titania 1577 8.706 0.340 .0011 4 6
6 IV *Oberon 1523 13.463 0.058 .0014 5 7
7 XVI Caliban 72 -579.50 139.885 .1587 11 15
8 XVII Sycorax 150 -1283.4 152.456 .5224 13 17

Neptune system
1 VIII *Proteus 420 1.122 0.08 .0005 1 1
2 I *Triton 2705 -5.877 156.86 .0000 4 5
3 II *Nereid 400 360.13 7.09 .7507 12 14
4 IX Halimede 62 -1879.08 112.90 .265 15 18
5 XIII Neso 60 -9740.73 131.26 .5714 18 22

Pluto system
1 I *Charonv 1208 6.387 0.00 .0022 0 0
2 V Styx 20 20.162 0.81 .0058 3 1
3 II *Nix 440 24.855 0.13 .0020 3 2
4 IV Kerberos 31 32.168 0.39 .0033 4 3
5 III *Hydra 50 38.202 0.24 .0059 4 4

is well supported by all objects (dashed curve). Here the distributions of the
numerations M3 and M4 open many vacancies (see Table 2, columns M3
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Fig. 9. Solar platurn system with 8 regular planets. See Fig. 3, Table 2, 3, 4 and text. The
secondary TBL is shifted horizontally to the left by -1. The numbers of Pluto, Haumea
and Eris correspond to more than one object. See Table 2, columns M3 and M4.

and M4). Really the solar planet system occurs very complicated and we
will use QC3 on the diagrams in Fig. 10 as an additional primary minimum.

Table 2. Basic data about the 8 large planets and the 9 dwarf planets from Brown (2012):
D – diameter in Earth diameters; P – orbital period in Earth years; i - orbital inclination
in respect to the Earth orbit; e – orbital eccentricity; M1 and M2 – numerations in respect
to the primary and secondary minimum of the error curve E(Q) when only the 4 giant
planets are used as regular planets (Fig. 8); M3 and M4 - numerations in respect to the
primary and secondary minimum of the error curve E(Q) when all 8 planets are used as
regular planets (Fig. 9).

Name D[ED] P [EY] i[o] e M2 M1 M3 M4

1 *Mercury 0.382 0.241 7.0 .216 1 1 2 2
2 *Venus 0.949 0.615 3.4 .007 2 3 3 4
3 *Earth 1.0 1.0 0.0 .017 3 3 4 5
4 *Mars 0.532 1.881 1.85 .093 3 4 5 6
5 Ceres 0.076 4.60 10.59 .079 4 5 7 8
6 *Jupiter 11.209 11.862 1.30 .048 5 6 8 9
7 *Saturn 9.449 29.458 2.48 .054 6 7 9 11
8 *Uranus 4.007 84.018 0.77 .047 7 8 11 13
9 *Neptune 3.883 164.780 1.77 .009 8 9 12 14
10 Orcus 0.062 245.18 20.57 .227 8 9 13 15
11 Pluto 0.180 248.09 17.14 .249 8 9 13 15
12 Haumea 0.094 283.28 28.22 .195 8 10 13 15
13 Quaouar 0.070 285.97 8.00 .039 8 10 13 15
14 Make2 0.111 550.98 30.70 .500 9 10 14 16
15 2007-OR10 0.100 550.98 30.70 .500 9 10 14 16
16 Eris 0.182 557.00 44.19 .442 9 10 14 16
17 Sedna 0.076 11400.0 11.93 .853 12 14 19 22
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5. Dependence of the logarithmic step of the orbital period
on the logarithm of the central body mass

Figure 10 represent the correlations between the mass of the central body
M (expressed in Eath mases, EM ), in logarithmic scale and the constants
QC= log PC or BC=log AC (step of near-equidistantly distribution of
the orbital periods or sizes), left panel or PC or AC (coefficients of near-
commensurability of the orbital periods or sizes), right panel. The coeffi-
cients of correlation for both systems of data are about 0.7. The regression
slopes are significant above the 99 % criterion of Student.

Fig. 10. Correlation between the logarithm of mass of the central body M (in Earth
masses, EM) and the parameter of the regularity: primary (dots inside circles) and sec-
ondary (dots only). The solar planet system is presented by two pairs of constants: for 4
regular planets and for 8 regular planets (Table 4). Squares note 4 points that are known
early from the paper of Dermatt (1968). Solid regression lines describe only primary TBL
slopes and dashed lines describe all slopes. (a) The parameters are log PC = QC (left
ordinate) or log AC (right ordinate). (b) The parameters are PC (left ordinate) or AC

(right ordinate).

In Fig.10 solid lines represent the regressions over primary parameters
while dashed lines represent the regressions over all parameters. In all cases
the regression weights of the data items are equal to 1. The respective
weighted regressions, when the weights of the data items are proportional
to the deepness D of the minimums (Table 3, columns D1 and D2), the
regressions show the same appearance, being shifted upward by about 0.01.

6. Summary and conclusions

Four points on the diagrams in Fig.10, known by Dermatt (1968) and noted
by squares, are not enough for defining of a good dependence.

In the presented work we suppose that the current status of any orbital
system is result of an ongoing dynamical evolution and therefore transient.
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Table 3. Parameters of the central body and minimums of the error curve: M - mass in
kilograms; P – rotational period in days; N – number of used regular satellites of planets;
D – deepnes of the minimum, W – size of the minimum at the half of its deepness; σ –
standard error of the TBL (Eq. 4, in the logarithmic scale). Subscripts "1" or "2" indicate
primary or secondary minimums.

log M [kg] P [d] N D1 W1 σ1 D2 W2 σ2

Jupiter 2.5 .413 4 .78 .041 .022 .27 .005 .048
Saturn 1.98 .440 7 .38 .018 .038 .19 .006 .065
Uranus 1.23 .719 5 .73 .011 .020 .56 .009 .029
Neptune 1.12 .670 3 .58 .014 .031 .31 .009 .037
Pluto -2.66 6.387 3 .92 .005 .001 .80 .002 .071
Sun 5.12 25.05 8 .39 .011 .043 .35 .014 .051

Table 4. Final results about the parameters of TBLs in the Solar System:QC – step of
the period growing in logarithmic scale; PC – coefficient of period growing in linear scale;
BC and AC – respective step and coefficient of growing of the semi-major orbital axes;
σR – relative standard square error of the TBL. Here QC=logPC (Eq. 4) and BC=logAC

in (Eq. 2). Subscripts "1" or "2" indicate primary or secondary minimums.

QC1 PC1 BC1 AC1 σR1 QC2 PC2 BC2 AC2 σR2

Jupiter .317 2.07 .211 1.63 5.2 .200 1.58 .133 1.36 11.7
Saturn .172 1.49 .115 1.30 9.1 .263 1.83 .175 1.50 16.1
Uranus .227 1.69 .151 1.42 4.7 .194 1.56 .129 1.35 6.9
Neptune .256 1.80 .171 1.48 7.4 .185 1.53 .123 1.34 8.9
Pluto .195 1.57 .130 1.35 2.3 .0975 1.25 .065 1.16 2.3
Sun(I) .379 2.39 .253 1.79 8.8 .430 2.69 .287 1.93 17.7
Sun(II) .239 1.73 .159 1.44 10.4 .281 1.91 .187 1.54 12.4

So, by excepting a single well prominent parameter of near-regularity (a
coefficient in the linear scale or a step in the logarithmic scale), called here
primary parameter, another poorly prominent such parameter, correspond-
ing to a past or a future status of the system may be found. For that reason
we proposed a method that scans the possible values of the parameter of
near-regularity and leads us to parameters of primary and secondary TBLs.
We apply this method for the regular satellites of Jupiter, Saturn, Uranus,
Neptune and Pluto, as well as for four or eight planets of the Solar System.
The derived regularity parameters (primaries only, or both, primaries and
secondaries) increase with the increasing of the mass of the central body.
The dependencies, which cover 99 % Student’s test, are shown in Fig. 10.

It is interesting whether such a dependence is supported by the orbits
of the exoplanet systems.
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