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Abstract. This paper presents graphically well known tests about change of population
mean and standard deviation, about comparison of population means and standard devi-
ations, as well as about significance of correlation and regression coeflicients. The critical
bounds and criteria for variability with statistical guaranty P = 95% and P = 99% are pre-
sented as dependences on the data number n. The graphs further give fast visual solutions
of the direct problem (estimation of confidence interval for specified P and n), as well of
the reverse problem (estimation of n, which is necessary for achieving a desired statistical
guaranty of the result). The aim of the work is to present the simplest statistical tests in a
comprehensible and convenient graphs, which will be always at hand. The graphs may be
useful in the investigations of time series in astronomy, geophysics, ecology etc., as well as
in the education.
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Introduction

Any simple statistical test about variability checks the belonging of a suitable
parameter, calculated from the data and called score, to confidence interval,
corresponding to preliminary given (high) probability P (f.e. P = 95%). The
respective (low) probability p = 1 — P, called confidence level or error level, is
used more often. If the score fails inside the interval, null hypothesis (Hp) is
accepted, i.e. the check parameter (e.g. ) may be considered constant. If the
score fails outside the interval, alternative hypothesis (Hy4) is accepted, i.e. the
check parameter may be considered changed.

The theory and application of the statistical inferences based on confidence
intervals is elaborated and described by Fisher (1925), Neyman & Pearson
(1933), Tucker (1962), Zaks (1971), Cox & Hinkley (1974) etc.,as well as in the
contemporary manuals.

In practice the user find the critical bounds of the confidence interval by pre-
liminary calculated tables or by computer programs. Here we propose graphs
of the critical bounds in dependence on the data number n. These graphs hold
at least tree advantages. First, they are based on handy and easy calculated
scores, specified here essentially for the practice. Second, they allow fast visual
decision of the direct problem (check of null hypothesis by given n), as well
as the reverse problem (estimation of necessary n for specified null hypothe-
sis). Third, they provide decisions of both problems looking on a few graphs
of critical bounds simultaneously. The disadvantage of these graphs is the low
accuracy of the solution: only two significant digits.

Hereafter we suppose a normally distributed random variable X, presented
by a sample of n its mutually independent realizations (data) =1, z2, ..., Tp.
The main statistical parameters of the sample are the population mean p, the
population standard deviation o, the sample mean m (average of the data)
and the sample standard deviation s (mean square deviation of the data from

m). The usual estimators are m = (X;)/n and s = [ Az;/(n — 1)]'/2, with
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Axj = x; —m. Hereafter the summing is executing always from 1 to n. Later
we will suppose also a second such random variable, Y.

Two kinds of confidence intervals for the estimated parameter (e.g. ut) are of
interest: two-sided, (01(p/2), d2(p/2)) and one-sided, (oo, §(p)) or (delta(p), c0).
The first one accounts for possible increase or decrease and the second one con-
cerns increase only (or, depending on the task, decrease only). Note that in all
cases the level of error is p = 1— P. Further, when the score parameter has sym-
metric random distribution (of Gauss-type or of Student-type), the two-sided
interval is presented simply as [—0(p/2),(p/2))]. Generally, the statistical test
based on two-sided interval is harder.

In practice the dependence of the interval bounds (critical bounds) on the
number of data n is the most essential and that’s reason to build such kinds
of graphs. The applying of the graphs includes calculation of the handy score
value and compare it with the critical bounds over the data number n. When
the score occurs under the bound, null hypothesis is accepted, i.e. the checked
parameter is considered to be unchanged with P% statistical guaranty. Other-
wise, alternative hypothesis is accepted, i.e. the checked parameter is consid-
ered to be changed with P% statistical guaranty.

This paper gives consecutively graphs for (1) intervals and variability of the
population mean by Gauss and Student tests, (2) comparison of two sample
means through Gauss and Student tests, (3) intervals and variability of the
correlation and regression coefficients through Gauss and Student tests, (4)
intervals and variability of the standard deviation through Pearson and Fisher
tests.

1. Intervals and variability for the population mean g through
Gauss test and Student T'(n — 1) test

Any sample value z;(j = 1,2,...,n) of mutually independent and normally
distributed random data (results of measurements) may be scaled to the (stan-
dard) Gauss distribution by the substitution z; = (x; — p)/o, as well as to the
Student distribution T'(n — 1) with degrees of freedom f =mn — 1 by the sub-
stitution t; = (x; —m)/s.

That is why the scores (suitable random variables, calculated from the
data), that are widely used in the statistical inferences about p are:

(1.0) 2" = (m = p)/(o/v/n) or t' = (m — p)/(s//n).

Here u, o are (unknown) constants, but s and m are calculated from n data.

According to the statistical theorems, the score 2’ follows Gauss distribution
with standard deviation o/y/n and ¢’ follows Student T-distribution with de-

grees of freedom f =n — 1 with standard deviations s/\/n.

Then any P% confidence intervals for 2’ or ¢ may be presented simply
as |2'] < z¢(p/2) or || < tc(p/2; f) (two-sided) and |2/| < z.(p/2) or |t'| <
te(p/2; f) (as well as |2| > z.(p/2) or [t'| > te(p/2; f)) (one-sided).

Here we propose more handy score values,
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(1.1) z =2'/vn=(m—p)/oort =t'/\/n=(m—p)/s,

where the difference (m — p) again is expressed in the units of o or s, but the

factor /n is applied as divisor of the modified interval bounds.
So, the modified confidence intervals for the scores z and ¢ become

(1.2)) |2| < ze(p/2)/v/n or [t] < te(p/2; £)/v/1,

two-sided, and

(1.27) [2| < ze(p)/v/n or [t| < te(p; f)/V/n,

one-sided.
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Fig. 1. Confidence intervals for Gauss tests, based on score |z| = (m — p)/o, with bounds

ze(p/2)/+/n (two-sided, solid lines) and z.(p)/+/n (one-sided, dashed lines),in dependence on
data number n. The bounds correspond to statistical guaranty of 95, 99 and 99.9 %.

The distributions of Gauss and Student have symmetrical shapes and by
this reason only the bounds of the intervals (1.2’) and (1.2") are shown in the
graphs. The bounds for the two-sided case are presented by solid curves and
these for the on-sided case are given by dashed curves.

Figure 1 presents large scale critical bounds for the Gauss test with score z
in respect to o and in dependence on n. The bounds corresponds to cumulative
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percentages of 95, 99 and 99,9 % with respective quantile values of z.(p) equal
to 1.645, 2.326 and 3.081 (one-sided case), as well as z.(p/2), equal to 1.96,
2.576 and 3.283 (two-sided case).

Figure 2 gives critical bounds for the Student 7'(n — 1) test in respect to
s and in dependence on n. Tables of the quantile values for one-sided or two-
sided intervals may be find in any manual after Fisher & Yates (1963). It is
seen that at large number of data, f.e. n > 50, the Student bounds come close
to the Gauss bounds (short dashed lines), but when the data number is low,
the Student bounds must be used.
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Fig. 2. Confidence intervals for Student 7'(n—1) tests, based on the score t = (m—u)/s, with

bounds +t.(p/2; f)/+/n (two-sided, solid lines) and t.(p; f)/+/n (one-sided, dashed lines), in
dependence on the data number n. The bounds correspond to statistical guaranty of 95 and
99 %. The dotted lines show the bounds for the score z = (m — p) /o, which is usable in in
Fig.1.

The graphs in Fig.1 and Fig.2 may be used firstly for deriving of critical
bounds of P% confidence intervals for unknown population mean p through z
or t scores (1.1).

The main purposes of the graphs in Fig.1 and Fig.2 are to ensure easy test
about suspected change of a known population mean y, as follows.

To check a possible change of p, one calculates the value of |z| or [¢|. If the
result exceeds the line of the chosen P% interval bound over n, the preliminary
known p may be announced as already changed and replaced by m within
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respective statistical guaranty P. Two-sided interval corresponds to principal
change (increase or decrease) and one-sided interval corresponds to increase
only or decrease only.

The graphs in Fig.1 and Fig. may be used also for fast solution of the
reverse problem, i.e. deriving the number of the data n that are necessary for
achieving of desired confidence interval for variability validation.

The graphs may be used also for determination of the P% confidence in-
terval of the unknown p using the interval bound z; or ¢; over n and the
inequalities (1.1) and (1.2’). The bounds of the two-sided confidence intervals
may be presented shortly as

(1.3’) m £ 0.2; or m £ s.t,
and the bounds for one-sided confidence intervals are

(1.3") m+ 0.z, or m + s.;.

2. Comparison of two sample means m, and m, through
Gauss test and Student T'(2n — 2) test

Suppose we have two samples of normal distributed and mutually independent
random data: x],j = 1,2,...,n,, with respective p,0,, m; and s;, as well
as yj,J = 1,2,...,ny, w1th respectlve [y, 0y, My and s,. In the theory the

scores z = (Mg —my)/(0zy/+/n) or t = (M, — )/(sxy/\/_) (with mg > my)

are used. The ﬁrst of them follows Gauss distrlbutlon and the second one has
Student distribution with degrees of freedom f = n, +n, — 2.

Here we concentrate on the simplest case when n, = n, =n and o, =
oy = o or s; = s, = s. Then following the statistical theorems we have

Oy = [(02 +0§)/2]1/2 = 0/V2, as well as s, = s/v/2. Further the scores
becomes

(2.0) 2" = (mg —my)/(0//n[2) or t' = (ma —my)/(s/\/n/2),

where the first of them follows Gauss distribution and the second one has Stu-
dent distribution with degrees of freedom f = 2n — 2, (T'(2n — 2)), are usually
used.
Here, like in Chapter 1, we introduce more handy scores:

(2.1) 2 = 2/ /\/nf2 = (mg —my) /o or t == t//\/n]2 = (my —m,)/s

with respective critical bounds of P% confidence intervals

(2.2) |2 < 2e(p/2)/v/n/2 or [t| <te(p/2; f)/V/n/2,

two-sided and

(2.2") 2 < ze(p)/\/nJ2 or t < to(p; f)//n/2
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one-sided.

Figure 3 show the critical bounds of these intervals graphically. It provides
visual solution of the problems like these accounted in the end of Chapter 1.
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Fig. 3. Confidence intervals for the Student T'(2n—2) test based on the score t = (m.—my)/s

with bounds t.(p/2; f)/+/n/2 (two-sided, solid lines) and t.(p; f)/+/n/2 (one-sided, dashed
lines) for 95 and 99 % guaranty, in dependence on data number n. Dotted lines show the
respective critical bounds for Gauss distributed score z = (m., —my)/o.

One important problem in the practice is the establishment of variability
of the population mean p by means of two samples of data with sample means
my and my, . Then if the value of z or ¢ in (2.1) occurs above the specified curve
above the data number n, the difference (m, —my), as well as the variability
of u may be considered to be significant with respective statistical guaranty.

Note that the confidence intervals for the difference m, — m, are similar

to these given in Chapter 1, however here they are v/2 times higher. Again
at large n the Student curves tend to Gauss lines and again the Gauss test is
not recommendable, because the standard deviation o is poorly known in the
practice.
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3. Intervals and variability of the correlation and regression
coefficients through Gauss test and Student T'(n — 2) test

Suppose n pairs of random data (z;,y;),7 = 1,2,...,n, with statistical pa-
rameters iz, 0gz, My, S, as well as p,, oy, my, s,. Suppose also the correlation
coefficient p and regression model y; = 3o + (1.7, + €, where x; are known, y;
are observed, but p, 81 and Sy are unknown. The deviations (Y-errors) e; are
considered to be independent and normally distributed random variables with
population mean 0 and (unknown) standard deviation oy,.
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Fig. 4. Confidence intervals for the Student 7'(n — 2) tests based on t-scores (3.1), presented
commonly as (3.5), with bounds (3.6), for 95 % and 99 % statistical guaranty, in dependence
on the data number n. The solid curves correspond to two-sided tests and the dashed ones -
to one-sided tests. Short-dashed lines show the respective bounds for the Gauss distributed
z-scores, analogous of t-scores, but with o instead s in every case (not included in the text).

Suppose also r is the sample correlation coefficient while by and b; are
the least-squares estimators of the regression coefficients with sample standard
deviations s;, spg and sp;.

Hereafter the inequalities are presented only for scores for Student tests,
because the value of the respective ¢ is unknown in principle. Though, the
critical bounds with use of o and Gauss distribution are shown for comparison
in the graphs in Fig.4
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In this Chapter 3 the tests have to answer whether the coefficients r, by
and b; are statistically equal to some specified (preliminary known) values, f.e.
p, Bo and 1, respectively. The last values is often taken to be 0 and then the
test show whether random variables X and Y may be consider to be related.

So, the commonly used score values are the relative differences

(3.1) tr = (p—71)/sr teo = (bo — Bo)/sp0 and ty; = (b1 — B1)/5p1-

They follow T'(n —2) Student distributions with degrees of freedom f =n — 2.
Further the correlation and regression coefficients are defined by use of the

denotations Sy, = X(z; —mz)?, Syy = X(y; — my)?, as well as S,y =

Y(xj —mgz)(y; —my). Then the coefficients take the forms

(3.2) r = S:cy/(Sxx-Syy)l/2a

(3.2") by = Syy/Sgs and

(3.2") bg = my — b1.my.

The residual mean square deviation from the regression line is defined as
(3:3) sy = (27 — bo — by )2/ (n — 2)]V2.

The sample standard deviations of s,., spg and sp; are defined as

(3.4) s, =[(1 =72,/ (n = 22,

(3.47) spp = syx/S;g/f, and

(3477) 800 = sya[(1n) + (M3 /Ses)]'/2.

For simplification of the further presentation we well denote all scores, de-
fined in (3.1) commonly as

(3.5) t =(c—C)/Se,

where ¢ is the derived (estimated from the data) coefficient, ¢ is the checked
preliminary known value of the coefficient (or 0) and s. is the sample standard
deviation of the coefficient.

Then the respective two-sided and one sided intervals as

(3.6) [t| < te(p/2; f) and [t < te(p; f)-

Figure 4 shows bounds of the intervals (3.6), corresponding to the scores
(3.1), presented commonly as (3.5). In this cases the bounds are just the Stu-
dent curves of the type T'(n — 2).

The testing procedure includes calculation of the score defined in (3.1) and
comparing the result with the curves of the graph above the specified n. If the
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score occurs above the specified curve, the respective criterion for statistical

significance of the coefficient (or its distinction from 0) is fulfilled.

The confidence intervals for the parameters p, Byp and ;1 may be derived

like in the end of Chapter 1.
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Fig. 5. Two-sided confidence intervals for the Pearson test based on the score s/o with
bounds given in (4.2’) for P = 98% (solid curves) and P = 90% (dashed curves), in de-
pendence on the data number n. Upper bounds of the one-sided intervals are presented in

Fig.6.

4. Intervals and variability of the standard deviation through

Pearson x?(n — 1) and Fisher F(n — 1) tests

The P% confidence intervals for (unknown) o is determining through the con-

venient score u? = s2/[0%/(n — 1)], that follows Pearson y2-distribution with
degrees of freedom f = n — 1. This distribution has asymmetric shape.

The respective two-sided and one-sided confidence intervals for o2, given

in the literature are

(4.1) (n=1).82/x*(p/2: ) < 0 < (n—1).5*/x*(1 = p/2; f)
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and

(4.17) 0 < (n = 1).8*/x*(1 = p; f).

Here we again introduce more handy score u = s/o, that expresses s in

o-units, and denote x = (X2)1/ 2. Then the two-sided and one-sided confidence
intervals for u are

(4.2) (n = 1)'2/x(p/2 f) < s/o < (n = 1)"?/x(1 = p/2; f) and
(4.27) s/o < (n—1)"?/x(1 —p; f).

Figure 5 presents the respective two-sided critical bounds for 90 % and 98
% statistical guaranty in dependence on n. Note that ordinate axis in Fig.5 is
presented after division by (n — 1)!/2. One-sided bounds for 90 % and 98 %
statistical guaranty are presented by dashed curves in Fig.6.

The graphs in Fig.5 may be used for fast determination of the confidence in-
terval of o, as well as for estimation of n that is necessary for desired statistical
guaranty of the result.

As an example, let us firstly consider o to be preliminary well known.
Suppose we have n = 10 new measurements with s/o = 2. We may see in
Fig.5 that this 2-fold increase of s in respect to o is significant with 95 %
guaranty, but it is not significant with 98 % guaranty. Secondly, if we hsve the
same conditionsq but we derive s/o = 0.7, we must conclude that the decrease
of of s in respect to o is significant with 95 % guaranty, but it is not significant
with 98 % guaranty.

In practice the value of o is usually poor known or in principle variable.
Then the confidence intervals and tests about variability of ¢ must be based
of two estimations of o, sg and s, by application of Fisher distribution.

Suppose a preliminary independent estimation sg of o, taken from ng =n
data. Then the P% confidence intervals for o is determining through convenient
score v = s2/s, for s> > s3. This ratio follows Fisher F'(n — 1) distribution
with degrees of freedom f=n — 1.

The Fisher distribution, like the Pearson distribution, has asymmetric shape
with confidence intervals for v? given by the inequalities 1/F(p/2; f) < v? <
F(p/2; f) (two-sided) and v? < F(p; f) (one-sided). Because of the prelimi-
nary condition for s? > s only the interval v2 < F(p/2; f), that is statistical
criterion for change of o, is used in the practice.

We introduce more handy score ratio v = s/sq, for s > sg, that expresses
s in sp-units. Then the upper limit of the confidence interval for s/s is

(4.3) s/s0 < F(p/2; f)'/2.

Figure 6 shows the bounds of such intervals in dependence on n, accounting
f=n—1,for 95 % and 99 % statistical guaranty.

The graphs in Fig.6 may be used for fast establishment of variability of o
like that of p in Chapter 1, as well as like in the first example in this Chapter
4.
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Conclusion

The graphs of the tests about the change of ¢ and ¢ has been already applied
successfully for establishing of the stellar flickering (Georgiev, 2012), based on
observations in the Rozhen NAO, published by Zamanov (2011) and Stoyanov
(2012). The graphs occur very useful also in the lecturer practice of the author.
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Fig. 6. Solid curves: upper bounds of the two-sided confidence intervals for the Fisher test,
based on the score s/so (for s > s¢) with bounds given in (4.3) for 95 % and 99 % statistical
guaranty, in dependence on the data number n. Dashed curves: upper bounds of the one-
sided confidence intervals for the Pearson test, based on the score s/o (for s > o) with

bounds given in (4.2") for 95 % and 98 % statistical guaranty, in dependence on the data
number n.
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