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Abstrat. This paper presents graphially well known tests about hange of population

mean and standard deviation, about omparison of population means and standard devi-

ations, as well as about signi�ane of orrelation and regression oe�ients. The ritial

bounds and riteria for variability with statistial guaranty P = 95% and P = 99% are pre-

sented as dependenes on the data number n. The graphs further give fast visual solutions
of the diret problem (estimation of on�dene interval for spei�ed P and n), as well of
the reverse problem (estimation of n, whih is neessary for ahieving a desired statistial

guaranty of the result). The aim of the work is to present the simplest statistial tests in a

omprehensible and onvenient graphs, whih will be always at hand. The graphs may be

useful in the investigations of time series in astronomy, geophysis, eology et., as well as

in the eduation.

Key words: Statistial inferenes

Introdution

Any simple statistial test about variability heks the belonging of a suitable

parameter, alulated from the data and alled sore, to on�dene interval,

orresponding to preliminary given (high) probability P (f.e. P = 95%). The
respetive (low) probability p = 1−P , alled on�dene level or error level, is

used more often. If the sore fails inside the interval, null hypothesis (H0) is

aepted, i.e. the hek parameter (e.g. µ) may be onsidered onstant. If the

sore fails outside the interval, alternative hypothesis (HA) is aepted, i.e. the

hek parameter may be onsidered hanged.

The theory and appliation of the statistial inferenes based on on�dene

intervals is elaborated and desribed by Fisher (1925), Neyman & Pearson

(1933), Tuker (1962), Zaks (1971), Cox & Hinkley (1974) et.,as well as in the

ontemporary manuals.

In pratie the user �nd the ritial bounds of the on�dene interval by pre-

liminary alulated tables or by omputer programs. Here we propose graphs

of the ritial bounds in dependene on the data number n. These graphs hold

at least tree advantages. First, they are based on handy and easy alulated

sores, spei�ed here essentially for the pratie. Seond, they allow fast visual

deision of the diret problem (hek of null hypothesis by given n), as well
as the reverse problem (estimation of neessary n for spei�ed null hypothe-

sis). Third, they provide deisions of both problems looking on a few graphs

of ritial bounds simultaneously. The disadvantage of these graphs is the low

auray of the solution: only two signi�ant digits.

Hereafter we suppose a normally distributed random variable X, presented

by a sample of n its mutually independent realizations (data) x1, x2, ..., xn.
The main statistial parameters of the sample are the population mean µ, the
population standard deviation σ, the sample mean m (average of the data)

and the sample standard deviation s (mean square deviation of the data from

m). The usual estimators are m = (Σxj)/n and s = [Σ∆xj/(n − 1)]1/2, with
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∆xj = xj −m. Hereafter the summing is exeuting always from 1 to n. Later
we will suppose also a seond suh random variable, Y .

Two kinds of on�dene intervals for the estimated parameter (e.g. µ) are of
interest: two-sided, (δ1(p/2), δ2(p/2)) and one-sided, (∞, δ(p)) or (delta(p),∞).
The �rst one aounts for possible inrease or derease and the seond one on-

erns inrease only (or, depending on the task, derease only). Note that in all

ases the level of error is p = 1−P . Further, when the sore parameter has sym-

metri random distribution (of Gauss-type or of Student-type), the two-sided

interval is presented simply as [−δ(p/2), δ(p/2))]. Generally, the statistial test
based on two-sided interval is harder.

In pratie the dependene of the interval bounds (ritial bounds) on the

number of data n is the most essential and that's reason to build suh kinds

of graphs. The applying of the graphs inludes alulation of the handy sore

value and ompare it with the ritial bounds over the data number n. When

the sore ours under the bound, null hypothesis is aepted, i.e. the heked

parameter is onsidered to be unhanged with P% statistial guaranty. Other-

wise, alternative hypothesis is aepted, i.e. the heked parameter is onsid-

ered to be hanged with P% statistial guaranty.

This paper gives onseutively graphs for (1) intervals and variability of the

population mean by Gauss and Student tests, (2) omparison of two sample

means through Gauss and Student tests, (3) intervals and variability of the

orrelation and regression oe�ients through Gauss and Student tests, (4)

intervals and variability of the standard deviation through Pearson and Fisher

tests.

1. Intervals and variability for the population mean µ through

Gauss test and Student T (n − 1) test

Any sample value xj(j = 1, 2, . . . , n) of mutually independent and normally

distributed random data (results of measurements) may be saled to the (stan-

dard) Gauss distribution by the substitution zj = (xj −µ)/σ, as well as to the
Student distribution T (n − 1) with degrees of freedom f = n − 1 by the sub-

stitution tj = (xj −m)/s.
That is why the sores (suitable random variables, alulated from the

data), that are widely used in the statistial inferenes about µ are:

(1.0) z′ = (m− µ)/(σ/
√
n) or t′ = (m− µ)/(s/

√
n).

Here µ, σ are (unknown) onstants, but s and m are alulated from n data.

Aording to the statistial theorems, the sore z′ follows Gauss distribution
with standard deviation σ/

√
n and t′ follows Student T-distribution with de-

grees of freedom f = n− 1 with standard deviations s/
√
n.

Then any P% on�dene intervals for z′ or t′ may be presented simply

as |z′| < zc(p/2) or |t′| < tc(p/2; f) (two-sided) and |z′| < zc(p/2) or |t′| <
tc(p/2; f) (as well as |z′| > zc(p/2) or |t′| > tc(p/2; f)) (one-sided).

Here we propose more handy sore values,
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(1.1) z = z′/
√
n = (m− µ)/σ or t = t′/

√
n = (m− µ)/s,

where the di�erene (m− µ) again is expressed in the units of σ or s, but the
fator

√
n is applied as divisor of the modi�ed interval bounds.

So, the modi�ed on�dene intervals for the sores z and t beome

(1.2') |z| < zc(p/2)/
√
n or |t| < tc(p/2; f)/

√
n,

two-sided, and

(1.2�) |z| < zc(p)/
√
n or |t| < tc(p; f)/

√
n,

one-sided.

Fig. 1. Con�dene intervals for Gauss tests, based on sore |z| = (m − µ)/σ, with bounds

zc(p/2)/
√
n (two-sided, solid lines) and zc(p)/

√
n (one-sided, dashed lines),in dependene on

data number n. The bounds orrespond to statistial guaranty of 95, 99 and 99.9 %.

The distributions of Gauss and Student have symmetrial shapes and by

this reason only the bounds of the intervals (1.2') and (1.2") are shown in the

graphs. The bounds for the two-sided ase are presented by solid urves and

these for the on-sided ase are given by dashed urves.

Figure 1 presents large sale ritial bounds for the Gauss test with sore z
in respet to σ and in dependene on n. The bounds orresponds to umulative
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perentages of 95, 99 and 99,9 % with respetive quantile values of zc(p) equal
to 1.645, 2.326 and 3.081 (one-sided ase), as well as zc(p/2), equal to 1.96,

2.576 and 3.283 (two-sided ase).

Figure 2 gives ritial bounds for the Student T (n − 1) test in respet to

s and in dependene on n. Tables of the quantile values for one-sided or two-

sided intervals may be �nd in any manual after Fisher & Yates (1963). It is

seen that at large number of data, f.e. n > 50, the Student bounds ome lose

to the Gauss bounds (short dashed lines), but when the data number is low,

the Student bounds must be used.

Fig. 2. Con�dene intervals for Student T (n−1) tests, based on the sore t = (m−µ)/s, with
bounds ±tc(p/2; f)/

√
n (two-sided, solid lines) and tc(p; f)/

√
n (one-sided, dashed lines), in

dependene on the data number n. The bounds orrespond to statistial guaranty of 95 and

99 %. The dotted lines show the bounds for the sore z = (m− µ)/σ, whih is usable in in

Fig.1.

The graphs in Fig.1 and Fig.2 may be used �rstly for deriving of ritial

bounds of P% on�dene intervals for unknown population mean µ through z
or t sores (1.1).

The main purposes of the graphs in Fig.1 and Fig.2 are to ensure easy test

about suspeted hange of a known population mean µ, as follows.
To hek a possible hange of µ, one alulates the value of |z| or |t|. If the

result exeeds the line of the hosen P% interval bound over n, the preliminary

known µ may be announed as already hanged and replaed by m within
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respetive statistial guaranty P . Two-sided interval orresponds to prinipal

hange (inrease or derease) and one-sided interval orresponds to inrease

only or derease only.

The graphs in Fig.1 and Fig. may be used also for fast solution of the

reverse problem, i.e. deriving the number of the data n that are neessary for

ahieving of desired on�dene interval for variability validation.

The graphs may be used also for determination of the P% on�dene in-

terval of the unknown µ using the interval bound zl or tl over n and the

inequalities (1.1) and (1.2'). The bounds of the two-sided on�dene intervals

may be presented shortly as

(1.3') m± σ.zl or m± s.tl,

and the bounds for one-sided on�dene intervals are

(1.3�) m+ σ.zl or m+ s.tl.

2. Comparison of two sample means mx and my through

Gauss test and Student T (2n − 2) test

Suppose we have two samples of normal distributed and mutually independent

random data: xj , j = 1, 2, . . . , nx, with respetive µx, σx,mx and sx, as well
as yj, j = 1, 2, . . . , ny, with respetive µy, σy,my and sy. In the theory the

sores z = (mx −my)/(σxy/
√
n) or t = (mx −my)/(sxy/

√
n) (with mx > my)

are used. The �rst of them follows Gauss distribution and the seond one has

Student distribution with degrees of freedom f = nx + ny − 2.
Here we onentrate on the simplest ase when nx = ny =n and σx =

σy = σ or sx = sy = s. Then following the statistial theorems we have

σxy = [(σ2
x + σ2

y)/2]
1/2 = σ/

√
2, as well as sxy = s/

√
2. Further the sores

beomes

(2.0) z′ = (mx −my)/(σ/
√

n/2) or t′ = (mx −my)/(s/
√

n/2),

where the �rst of them follows Gauss distribution and the seond one has Stu-

dent distribution with degrees of freedom f = 2n− 2, (T (2n− 2)), are usually
used.

Here, like in Chapter 1, we introdue more handy sores:

(2.1) z = z′/
√

n/2 = (mx −my)/σ or t == t//
√

n/2 = (mx −my)/s

with respetive ritial bounds of P% on�dene intervals

(2.2') |z| < zc(p/2)/
√

n/2 or |t| < tc(p/2; f)/
√

n/2,

two-sided and

(2.2�) z < zc(p)/
√

n/2 or t < tc(p; f)/
√

n/2
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one-sided.

Figure 3 show the ritial bounds of these intervals graphially. It provides

visual solution of the problems like these aounted in the end of Chapter 1.

Fig. 3. Con�dene intervals for the Student T (2n−2) test based on the sore t = (mx−my)/s

with bounds tc(p/2; f)/
√

n/2 (two-sided, solid lines) and tc(p; f)/
√

n/2 (one-sided, dashed

lines) for 95 and 99 % guaranty, in dependene on data number n. Dotted lines show the

respetive ritial bounds for Gauss distributed sore z = (mx −my)/σ.

One important problem in the pratie is the establishment of variability

of the population mean µ by means of two samples of data with sample means

mx and my . Then if the value of z or t in (2.1) ours above the spei�ed urve

above the data number n, the di�erene (mx −my), as well as the variability
of µ may be onsidered to be signi�ant with respetive statistial guaranty.

Note that the on�dene intervals for the di�erene mx − my are similar

to these given in Chapter 1, however here they are

√
2 times higher. Again

at large n the Student urves tend to Gauss lines and again the Gauss test is

not reommendable, beause the standard deviation σ is poorly known in the

pratie.
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3. Intervals and variability of the orrelation and regression

oe�ients through Gauss test and Student T (n − 2) test

Suppose n pairs of random data (xj , yj), j = 1, 2, . . . , n, with statistial pa-

rameters µx, σx,mx, sx, as well as µy, σy,my, sy. Suppose also the orrelation

oe�ient ρ and regression model yj = β0 + β1.xj + ǫ, where xj are known, yj
are observed, but ρ, β1 and β0 are unknown. The deviations (Y-errors) ǫJ are

onsidered to be independent and normally distributed random variables with

population mean 0 and (unknown) standard deviation σyx.

Fig. 4. Con�dene intervals for the Student T (n−2) tests based on t-sores (3.1), presented

ommonly as (3.5), with bounds (3.6), for 95 % and 99 % statistial guaranty, in dependene

on the data number n. The solid urves orrespond to two-sided tests and the dashed ones -

to one-sided tests. Short-dashed lines show the respetive bounds for the Gauss distributed

z-sores, analogous of t-sores, but with σ instead s in every ase (not inluded in the text).

Suppose also r is the sample orrelation oe�ient while b0 and b1 are

the least-squares estimators of the regression oe�ients with sample standard

deviations sr, sb0 and sb1.
Hereafter the inequalities are presented only for sores for Student tests,

beause the value of the respetive σ is unknown in priniple. Though, the

ritial bounds with use of σ and Gauss distribution are shown for omparison

in the graphs in Fig.4
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In this Chapter 3 the tests have to answer whether the oe�ients r, b0
and b1 are statistially equal to some spei�ed (preliminary known) values, f.e.

ρ, β0 and β1, respetively. The last values is often taken to be 0 and then the

test show whether random variables X and Y may be onsider to be related.

So, the ommonly used sore values are the relative di�erenes

(3.1) tr = (ρ− r)/sr, tb0 = (b0 − β0)/sb0 and tb1 = (b1 − β1)/sb1.

They follow T (n− 2) Student distributions with degrees of freedom f = n− 2.
Further the orrelation and regression oe�ients are de�ned by use of the

denotations Sxx = Σ(xj −mx)
2
, Syy = Σ(yj −my)

2
, as well as Sxy =

Σ(xj −mx)(yj −my). Then the oe�ients take the forms

(3.2') r = Sxy/(Sxx.Syy)
1/2

,

(3.2") b1 = Sxy/Sxx and

(3.2"') b0 = my − b1.mx.

The residual mean square deviation from the regression line is de�ned as

(3.3) syx = [Σ(yj − b0 − b1.xj)
2/(n − 2)]1/2.

The sample standard deviations of sr, sb0 and sb1 are de�ned as

(3.4') sr = [(1− r2xy)/(n − 2)]1/2,

(3.4�) sb1 = syx/S
1/2
xx , and

(3.4� ') sb0 = syx[(1n) + (m2
x/Sxx)]

1/2
.

For simpli�ation of the further presentation we well denote all sores, de-

�ned in (3.1) ommonly as

(3.5) t = (c− ζ)/sc,

where c is the derived (estimated from the data) oe�ient, ζ is the heked

preliminary known value of the oe�ient (or 0) and sc is the sample standard

deviation of the oe�ient.

Then the respetive two-sided and one sided intervals as

(3.6) |t| < tc(p/2; f) and |t| < tc(p; f).

Figure 4 shows bounds of the intervals (3.6), orresponding to the sores

(3.1), presented ommonly as (3.5). In this ases the bounds are just the Stu-

dent urves of the type T (n− 2).
The testing proedure inludes alulation of the sore de�ned in (3.1) and

omparing the result with the urves of the graph above the spei�ed n. If the
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sore ours above the spei�ed urve, the respetive riterion for statistial

signi�ane of the oe�ient (or its distintion from 0) is ful�lled.

The on�dene intervals for the parameters ρ, β0 and β1 may be derived

like in the end of Chapter 1.

Fig. 5. Two-sided on�dene intervals for the Pearson test based on the sore s/σ with

bounds given in (4.2') for P = 98% (solid urves) and P = 90% (dashed urves), in de-

pendene on the data number n. Upper bounds of the one-sided intervals are presented in

Fig.6.

4. Intervals and variability of the standard deviation through

Pearson χ2(n − 1) and Fisher F (n − 1) tests

The P% on�dene intervals for (unknown) σ is determining through the on-

venient sore u2 = s2/[σ2/(n − 1)], that follows Pearson χ2
-distribution with

degrees of freedom f = n− 1. This distribution has asymmetri shape.

The respetive two-sided and one-sided on�dene intervals for σ2
, given

in the literature are

(4.1') (n− 1).s2/χ2(p/2; f) < σ2 < (n− 1).s2/χ2(1− p/2; f )
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and

(4.1�) σ2 < (n− 1).s2/χ2(1− p; f).

Here we again introdue more handy sore u = s/σ, that expresses s in

σ-units, and denote χ = (χ2)1/2. Then the two-sided and one-sided on�dene

intervals for u are

(4.2') (n− 1)1/2/χ(p/2; f) < s/σ < (n− 1)1/2/χ(1− p/2; f) and

(4.2�) s/σ < (n − 1)1/2/χ(1 − p; f).

Figure 5 presents the respetive two-sided ritial bounds for 90 % and 98

% statistial guaranty in dependene on n. Note that ordinate axis in Fig.5 is

presented after division by (n − 1)1/2. One-sided bounds for 90 % and 98 %

statistial guaranty are presented by dashed urves in Fig.6.

The graphs in Fig.5 may be used for fast determination of the on�dene in-

terval of σ, as well as for estimation of n that is neessary for desired statistial

guaranty of the result.

As an example, let us �rstly onsider σ to be preliminary well known.

Suppose we have n = 10 new measurements with s/σ = 2. We may see in

Fig.5 that this 2-fold inrease of s in respet to σ is signi�ant with 95 %

guaranty, but it is not signi�ant with 98 % guaranty. Seondly, if we hsve the

same onditionsq but we derive s/σ = 0.7, we must onlude that the derease
of of s in respet to σ is signi�ant with 95 % guaranty, but it is not signi�ant

with 98 % guaranty.

In pratie the value of σ is usually poor known or in priniple variable.

Then the on�dene intervals and tests about variability of σ must be based

of two estimations of σ, s0 and s, by appliation of Fisher distribution.

Suppose a preliminary independent estimation s0 of σ, taken from n0 = n
data. Then the P% on�dene intervals for σ is determining through onvenient

sore v2 = s2/s2
0
, for s2 > s2

0
. This ratio follows Fisher F (n − 1) distribution

with degrees of freedom f = n− 1.
The Fisher distribution, like the Pearson distribution, has asymmetri shape

with on�dene intervals for v2 given by the inequalities 1/F (p/2; f) < v2 <
F (p/2; f) (two-sided) and v2 < F (p; f) (one-sided). Beause of the prelimi-

nary ondition for s2 > s2
0
only the interval v2 < F (p/2; f), that is statistial

riterion for hange of σ, is used in the pratie.

We introdue more handy sore ratio v = s/s0, for s > s0, that expresses
s in s0-units. Then the upper limit of the on�dene interval for s/s0 is

(4.3) s/s0 < F (p/2; f)1/2.

Figure 6 shows the bounds of suh intervals in dependene on n, aounting
f = n− 1, for 95 % and 99 % statistial guaranty.

The graphs in Fig.6 may be used for fast establishment of variability of σ
like that of µ in Chapter 1, as well as like in the �rst example in this Chapter

4.
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Conlusion

The graphs of the tests about the hange of µ and σ has been already applied

suessfully for establishing of the stellar �ikering (Georgiev, 2012), based on

observations in the Rozhen NAO, published by Zamanov (2011) and Stoyanov

(2012). The graphs our very useful also in the leturer pratie of the author.

Fig. 6. Solid urves: upper bounds of the two-sided on�dene intervals for the Fisher test,

based on the sore s/s0 (for s > s0) with bounds given in (4.3) for 95 % and 99 % statistial

guaranty, in dependene on the data number n. Dashed urves: upper bounds of the one-

sided on�dene intervals for the Pearson test, based on the sore s/σ (for s > σ) with

bounds given in (4.2") for 95 % and 98 % statistial guaranty, in dependene on the data

number n.
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