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Abstra
t. This paper presents graphi
ally well known tests about 
hange of population

mean and standard deviation, about 
omparison of population means and standard devi-

ations, as well as about signi�
an
e of 
orrelation and regression 
oe�
ients. The 
riti
al

bounds and 
riteria for variability with statisti
al guaranty P = 95% and P = 99% are pre-

sented as dependen
es on the data number n. The graphs further give fast visual solutions
of the dire
t problem (estimation of 
on�den
e interval for spe
i�ed P and n), as well of
the reverse problem (estimation of n, whi
h is ne
essary for a
hieving a desired statisti
al

guaranty of the result). The aim of the work is to present the simplest statisti
al tests in a


omprehensible and 
onvenient graphs, whi
h will be always at hand. The graphs may be

useful in the investigations of time series in astronomy, geophysi
s, e
ology et
., as well as

in the edu
ation.
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Introdu
tion

Any simple statisti
al test about variability 
he
ks the belonging of a suitable

parameter, 
al
ulated from the data and 
alled s
ore, to 
on�den
e interval,


orresponding to preliminary given (high) probability P (f.e. P = 95%). The
respe
tive (low) probability p = 1−P , 
alled 
on�den
e level or error level, is

used more often. If the s
ore fails inside the interval, null hypothesis (H0) is

a

epted, i.e. the 
he
k parameter (e.g. µ) may be 
onsidered 
onstant. If the

s
ore fails outside the interval, alternative hypothesis (HA) is a

epted, i.e. the


he
k parameter may be 
onsidered 
hanged.

The theory and appli
ation of the statisti
al inferen
es based on 
on�den
e

intervals is elaborated and des
ribed by Fisher (1925), Neyman & Pearson

(1933), Tu
ker (1962), Zaks (1971), Cox & Hinkley (1974) et
.,as well as in the


ontemporary manuals.

In pra
ti
e the user �nd the 
riti
al bounds of the 
on�den
e interval by pre-

liminary 
al
ulated tables or by 
omputer programs. Here we propose graphs

of the 
riti
al bounds in dependen
e on the data number n. These graphs hold

at least tree advantages. First, they are based on handy and easy 
al
ulated

s
ores, spe
i�ed here essentially for the pra
ti
e. Se
ond, they allow fast visual

de
ision of the dire
t problem (
he
k of null hypothesis by given n), as well
as the reverse problem (estimation of ne
essary n for spe
i�ed null hypothe-

sis). Third, they provide de
isions of both problems looking on a few graphs

of 
riti
al bounds simultaneously. The disadvantage of these graphs is the low

a

ura
y of the solution: only two signi�
ant digits.

Hereafter we suppose a normally distributed random variable X, presented

by a sample of n its mutually independent realizations (data) x1, x2, ..., xn.
The main statisti
al parameters of the sample are the population mean µ, the
population standard deviation σ, the sample mean m (average of the data)

and the sample standard deviation s (mean square deviation of the data from

m). The usual estimators are m = (Σxj)/n and s = [Σ∆xj/(n − 1)]1/2, with
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∆xj = xj −m. Hereafter the summing is exe
uting always from 1 to n. Later
we will suppose also a se
ond su
h random variable, Y .

Two kinds of 
on�den
e intervals for the estimated parameter (e.g. µ) are of
interest: two-sided, (δ1(p/2), δ2(p/2)) and one-sided, (∞, δ(p)) or (delta(p),∞).
The �rst one a

ounts for possible in
rease or de
rease and the se
ond one 
on-


erns in
rease only (or, depending on the task, de
rease only). Note that in all


ases the level of error is p = 1−P . Further, when the s
ore parameter has sym-

metri
 random distribution (of Gauss-type or of Student-type), the two-sided

interval is presented simply as [−δ(p/2), δ(p/2))]. Generally, the statisti
al test
based on two-sided interval is harder.

In pra
ti
e the dependen
e of the interval bounds (
riti
al bounds) on the

number of data n is the most essential and that's reason to build su
h kinds

of graphs. The applying of the graphs in
ludes 
al
ulation of the handy s
ore

value and 
ompare it with the 
riti
al bounds over the data number n. When

the s
ore o

urs under the bound, null hypothesis is a

epted, i.e. the 
he
ked

parameter is 
onsidered to be un
hanged with P% statisti
al guaranty. Other-

wise, alternative hypothesis is a

epted, i.e. the 
he
ked parameter is 
onsid-

ered to be 
hanged with P% statisti
al guaranty.

This paper gives 
onse
utively graphs for (1) intervals and variability of the

population mean by Gauss and Student tests, (2) 
omparison of two sample

means through Gauss and Student tests, (3) intervals and variability of the


orrelation and regression 
oe�
ients through Gauss and Student tests, (4)

intervals and variability of the standard deviation through Pearson and Fisher

tests.

1. Intervals and variability for the population mean µ through

Gauss test and Student T (n − 1) test

Any sample value xj(j = 1, 2, . . . , n) of mutually independent and normally

distributed random data (results of measurements) may be s
aled to the (stan-

dard) Gauss distribution by the substitution zj = (xj −µ)/σ, as well as to the
Student distribution T (n − 1) with degrees of freedom f = n − 1 by the sub-

stitution tj = (xj −m)/s.
That is why the s
ores (suitable random variables, 
al
ulated from the

data), that are widely used in the statisti
al inferen
es about µ are:

(1.0) z′ = (m− µ)/(σ/
√
n) or t′ = (m− µ)/(s/

√
n).

Here µ, σ are (unknown) 
onstants, but s and m are 
al
ulated from n data.

A

ording to the statisti
al theorems, the s
ore z′ follows Gauss distribution
with standard deviation σ/

√
n and t′ follows Student T-distribution with de-

grees of freedom f = n− 1 with standard deviations s/
√
n.

Then any P% 
on�den
e intervals for z′ or t′ may be presented simply

as |z′| < zc(p/2) or |t′| < tc(p/2; f) (two-sided) and |z′| < zc(p/2) or |t′| <
tc(p/2; f) (as well as |z′| > zc(p/2) or |t′| > tc(p/2; f)) (one-sided).

Here we propose more handy s
ore values,
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(1.1) z = z′/
√
n = (m− µ)/σ or t = t′/

√
n = (m− µ)/s,

where the di�eren
e (m− µ) again is expressed in the units of σ or s, but the
fa
tor

√
n is applied as divisor of the modi�ed interval bounds.

So, the modi�ed 
on�den
e intervals for the s
ores z and t be
ome

(1.2') |z| < zc(p/2)/
√
n or |t| < tc(p/2; f)/

√
n,

two-sided, and

(1.2�) |z| < zc(p)/
√
n or |t| < tc(p; f)/

√
n,

one-sided.

Fig. 1. Con�den
e intervals for Gauss tests, based on s
ore |z| = (m − µ)/σ, with bounds

zc(p/2)/
√
n (two-sided, solid lines) and zc(p)/

√
n (one-sided, dashed lines),in dependen
e on

data number n. The bounds 
orrespond to statisti
al guaranty of 95, 99 and 99.9 %.

The distributions of Gauss and Student have symmetri
al shapes and by

this reason only the bounds of the intervals (1.2') and (1.2") are shown in the

graphs. The bounds for the two-sided 
ase are presented by solid 
urves and

these for the on-sided 
ase are given by dashed 
urves.

Figure 1 presents large s
ale 
riti
al bounds for the Gauss test with s
ore z
in respe
t to σ and in dependen
e on n. The bounds 
orresponds to 
umulative
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per
entages of 95, 99 and 99,9 % with respe
tive quantile values of zc(p) equal
to 1.645, 2.326 and 3.081 (one-sided 
ase), as well as zc(p/2), equal to 1.96,

2.576 and 3.283 (two-sided 
ase).

Figure 2 gives 
riti
al bounds for the Student T (n − 1) test in respe
t to

s and in dependen
e on n. Tables of the quantile values for one-sided or two-

sided intervals may be �nd in any manual after Fisher & Yates (1963). It is

seen that at large number of data, f.e. n > 50, the Student bounds 
ome 
lose

to the Gauss bounds (short dashed lines), but when the data number is low,

the Student bounds must be used.

Fig. 2. Con�den
e intervals for Student T (n−1) tests, based on the s
ore t = (m−µ)/s, with
bounds ±tc(p/2; f)/

√
n (two-sided, solid lines) and tc(p; f)/

√
n (one-sided, dashed lines), in

dependen
e on the data number n. The bounds 
orrespond to statisti
al guaranty of 95 and

99 %. The dotted lines show the bounds for the s
ore z = (m− µ)/σ, whi
h is usable in in

Fig.1.

The graphs in Fig.1 and Fig.2 may be used �rstly for deriving of 
riti
al

bounds of P% 
on�den
e intervals for unknown population mean µ through z
or t s
ores (1.1).

The main purposes of the graphs in Fig.1 and Fig.2 are to ensure easy test

about suspe
ted 
hange of a known population mean µ, as follows.
To 
he
k a possible 
hange of µ, one 
al
ulates the value of |z| or |t|. If the

result ex
eeds the line of the 
hosen P% interval bound over n, the preliminary

known µ may be announ
ed as already 
hanged and repla
ed by m within
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respe
tive statisti
al guaranty P . Two-sided interval 
orresponds to prin
ipal


hange (in
rease or de
rease) and one-sided interval 
orresponds to in
rease

only or de
rease only.

The graphs in Fig.1 and Fig. may be used also for fast solution of the

reverse problem, i.e. deriving the number of the data n that are ne
essary for

a
hieving of desired 
on�den
e interval for variability validation.

The graphs may be used also for determination of the P% 
on�den
e in-

terval of the unknown µ using the interval bound zl or tl over n and the

inequalities (1.1) and (1.2'). The bounds of the two-sided 
on�den
e intervals

may be presented shortly as

(1.3') m± σ.zl or m± s.tl,

and the bounds for one-sided 
on�den
e intervals are

(1.3�) m+ σ.zl or m+ s.tl.

2. Comparison of two sample means mx and my through

Gauss test and Student T (2n − 2) test

Suppose we have two samples of normal distributed and mutually independent

random data: xj , j = 1, 2, . . . , nx, with respe
tive µx, σx,mx and sx, as well
as yj, j = 1, 2, . . . , ny, with respe
tive µy, σy,my and sy. In the theory the

s
ores z = (mx −my)/(σxy/
√
n) or t = (mx −my)/(sxy/

√
n) (with mx > my)

are used. The �rst of them follows Gauss distribution and the se
ond one has

Student distribution with degrees of freedom f = nx + ny − 2.
Here we 
on
entrate on the simplest 
ase when nx = ny =n and σx =

σy = σ or sx = sy = s. Then following the statisti
al theorems we have

σxy = [(σ2
x + σ2

y)/2]
1/2 = σ/

√
2, as well as sxy = s/

√
2. Further the s
ores

be
omes

(2.0) z′ = (mx −my)/(σ/
√

n/2) or t′ = (mx −my)/(s/
√

n/2),

where the �rst of them follows Gauss distribution and the se
ond one has Stu-

dent distribution with degrees of freedom f = 2n− 2, (T (2n− 2)), are usually
used.

Here, like in Chapter 1, we introdu
e more handy s
ores:

(2.1) z = z′/
√

n/2 = (mx −my)/σ or t == t//
√

n/2 = (mx −my)/s

with respe
tive 
riti
al bounds of P% 
on�den
e intervals

(2.2') |z| < zc(p/2)/
√

n/2 or |t| < tc(p/2; f)/
√

n/2,

two-sided and

(2.2�) z < zc(p)/
√

n/2 or t < tc(p; f)/
√

n/2
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one-sided.

Figure 3 show the 
riti
al bounds of these intervals graphi
ally. It provides

visual solution of the problems like these a

ounted in the end of Chapter 1.

Fig. 3. Con�den
e intervals for the Student T (2n−2) test based on the s
ore t = (mx−my)/s

with bounds tc(p/2; f)/
√

n/2 (two-sided, solid lines) and tc(p; f)/
√

n/2 (one-sided, dashed

lines) for 95 and 99 % guaranty, in dependen
e on data number n. Dotted lines show the

respe
tive 
riti
al bounds for Gauss distributed s
ore z = (mx −my)/σ.

One important problem in the pra
ti
e is the establishment of variability

of the population mean µ by means of two samples of data with sample means

mx and my . Then if the value of z or t in (2.1) o

urs above the spe
i�ed 
urve

above the data number n, the di�eren
e (mx −my), as well as the variability
of µ may be 
onsidered to be signi�
ant with respe
tive statisti
al guaranty.

Note that the 
on�den
e intervals for the di�eren
e mx − my are similar

to these given in Chapter 1, however here they are

√
2 times higher. Again

at large n the Student 
urves tend to Gauss lines and again the Gauss test is

not re
ommendable, be
ause the standard deviation σ is poorly known in the

pra
ti
e.
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3. Intervals and variability of the 
orrelation and regression


oe�
ients through Gauss test and Student T (n − 2) test

Suppose n pairs of random data (xj , yj), j = 1, 2, . . . , n, with statisti
al pa-

rameters µx, σx,mx, sx, as well as µy, σy,my, sy. Suppose also the 
orrelation


oe�
ient ρ and regression model yj = β0 + β1.xj + ǫ, where xj are known, yj
are observed, but ρ, β1 and β0 are unknown. The deviations (Y-errors) ǫJ are


onsidered to be independent and normally distributed random variables with

population mean 0 and (unknown) standard deviation σyx.

Fig. 4. Con�den
e intervals for the Student T (n−2) tests based on t-s
ores (3.1), presented


ommonly as (3.5), with bounds (3.6), for 95 % and 99 % statisti
al guaranty, in dependen
e

on the data number n. The solid 
urves 
orrespond to two-sided tests and the dashed ones -

to one-sided tests. Short-dashed lines show the respe
tive bounds for the Gauss distributed

z-s
ores, analogous of t-s
ores, but with σ instead s in every 
ase (not in
luded in the text).

Suppose also r is the sample 
orrelation 
oe�
ient while b0 and b1 are

the least-squares estimators of the regression 
oe�
ients with sample standard

deviations sr, sb0 and sb1.
Hereafter the inequalities are presented only for s
ores for Student tests,

be
ause the value of the respe
tive σ is unknown in prin
iple. Though, the


riti
al bounds with use of σ and Gauss distribution are shown for 
omparison

in the graphs in Fig.4
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In this Chapter 3 the tests have to answer whether the 
oe�
ients r, b0
and b1 are statisti
ally equal to some spe
i�ed (preliminary known) values, f.e.

ρ, β0 and β1, respe
tively. The last values is often taken to be 0 and then the

test show whether random variables X and Y may be 
onsider to be related.

So, the 
ommonly used s
ore values are the relative di�eren
es

(3.1) tr = (ρ− r)/sr, tb0 = (b0 − β0)/sb0 and tb1 = (b1 − β1)/sb1.

They follow T (n− 2) Student distributions with degrees of freedom f = n− 2.
Further the 
orrelation and regression 
oe�
ients are de�ned by use of the

denotations Sxx = Σ(xj −mx)
2
, Syy = Σ(yj −my)

2
, as well as Sxy =

Σ(xj −mx)(yj −my). Then the 
oe�
ients take the forms

(3.2') r = Sxy/(Sxx.Syy)
1/2

,

(3.2") b1 = Sxy/Sxx and

(3.2"') b0 = my − b1.mx.

The residual mean square deviation from the regression line is de�ned as

(3.3) syx = [Σ(yj − b0 − b1.xj)
2/(n − 2)]1/2.

The sample standard deviations of sr, sb0 and sb1 are de�ned as

(3.4') sr = [(1− r2xy)/(n − 2)]1/2,

(3.4�) sb1 = syx/S
1/2
xx , and

(3.4� ') sb0 = syx[(1n) + (m2
x/Sxx)]

1/2
.

For simpli�
ation of the further presentation we well denote all s
ores, de-

�ned in (3.1) 
ommonly as

(3.5) t = (c− ζ)/sc,

where c is the derived (estimated from the data) 
oe�
ient, ζ is the 
he
ked

preliminary known value of the 
oe�
ient (or 0) and sc is the sample standard

deviation of the 
oe�
ient.

Then the respe
tive two-sided and one sided intervals as

(3.6) |t| < tc(p/2; f) and |t| < tc(p; f).

Figure 4 shows bounds of the intervals (3.6), 
orresponding to the s
ores

(3.1), presented 
ommonly as (3.5). In this 
ases the bounds are just the Stu-

dent 
urves of the type T (n− 2).
The testing pro
edure in
ludes 
al
ulation of the s
ore de�ned in (3.1) and


omparing the result with the 
urves of the graph above the spe
i�ed n. If the
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s
ore o

urs above the spe
i�ed 
urve, the respe
tive 
riterion for statisti
al

signi�
an
e of the 
oe�
ient (or its distin
tion from 0) is ful�lled.

The 
on�den
e intervals for the parameters ρ, β0 and β1 may be derived

like in the end of Chapter 1.

Fig. 5. Two-sided 
on�den
e intervals for the Pearson test based on the s
ore s/σ with

bounds given in (4.2') for P = 98% (solid 
urves) and P = 90% (dashed 
urves), in de-

penden
e on the data number n. Upper bounds of the one-sided intervals are presented in

Fig.6.

4. Intervals and variability of the standard deviation through

Pearson χ2(n − 1) and Fisher F (n − 1) tests

The P% 
on�den
e intervals for (unknown) σ is determining through the 
on-

venient s
ore u2 = s2/[σ2/(n − 1)], that follows Pearson χ2
-distribution with

degrees of freedom f = n− 1. This distribution has asymmetri
 shape.

The respe
tive two-sided and one-sided 
on�den
e intervals for σ2
, given

in the literature are

(4.1') (n− 1).s2/χ2(p/2; f) < σ2 < (n− 1).s2/χ2(1− p/2; f )
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and

(4.1�) σ2 < (n− 1).s2/χ2(1− p; f).

Here we again introdu
e more handy s
ore u = s/σ, that expresses s in

σ-units, and denote χ = (χ2)1/2. Then the two-sided and one-sided 
on�den
e

intervals for u are

(4.2') (n− 1)1/2/χ(p/2; f) < s/σ < (n− 1)1/2/χ(1− p/2; f) and

(4.2�) s/σ < (n − 1)1/2/χ(1 − p; f).

Figure 5 presents the respe
tive two-sided 
riti
al bounds for 90 % and 98

% statisti
al guaranty in dependen
e on n. Note that ordinate axis in Fig.5 is

presented after division by (n − 1)1/2. One-sided bounds for 90 % and 98 %

statisti
al guaranty are presented by dashed 
urves in Fig.6.

The graphs in Fig.5 may be used for fast determination of the 
on�den
e in-

terval of σ, as well as for estimation of n that is ne
essary for desired statisti
al

guaranty of the result.

As an example, let us �rstly 
onsider σ to be preliminary well known.

Suppose we have n = 10 new measurements with s/σ = 2. We may see in

Fig.5 that this 2-fold in
rease of s in respe
t to σ is signi�
ant with 95 %

guaranty, but it is not signi�
ant with 98 % guaranty. Se
ondly, if we hsve the

same 
onditionsq but we derive s/σ = 0.7, we must 
on
lude that the de
rease
of of s in respe
t to σ is signi�
ant with 95 % guaranty, but it is not signi�
ant

with 98 % guaranty.

In pra
ti
e the value of σ is usually poor known or in prin
iple variable.

Then the 
on�den
e intervals and tests about variability of σ must be based

of two estimations of σ, s0 and s, by appli
ation of Fisher distribution.

Suppose a preliminary independent estimation s0 of σ, taken from n0 = n
data. Then the P% 
on�den
e intervals for σ is determining through 
onvenient

s
ore v2 = s2/s2
0
, for s2 > s2

0
. This ratio follows Fisher F (n − 1) distribution

with degrees of freedom f = n− 1.
The Fisher distribution, like the Pearson distribution, has asymmetri
 shape

with 
on�den
e intervals for v2 given by the inequalities 1/F (p/2; f) < v2 <
F (p/2; f) (two-sided) and v2 < F (p; f) (one-sided). Be
ause of the prelimi-

nary 
ondition for s2 > s2
0
only the interval v2 < F (p/2; f), that is statisti
al


riterion for 
hange of σ, is used in the pra
ti
e.

We introdu
e more handy s
ore ratio v = s/s0, for s > s0, that expresses
s in s0-units. Then the upper limit of the 
on�den
e interval for s/s0 is

(4.3) s/s0 < F (p/2; f)1/2.

Figure 6 shows the bounds of su
h intervals in dependen
e on n, a

ounting
f = n− 1, for 95 % and 99 % statisti
al guaranty.

The graphs in Fig.6 may be used for fast establishment of variability of σ
like that of µ in Chapter 1, as well as like in the �rst example in this Chapter

4.
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Con
lusion

The graphs of the tests about the 
hange of µ and σ has been already applied

su

essfully for establishing of the stellar �i
kering (Georgiev, 2012), based on

observations in the Rozhen NAO, published by Zamanov (2011) and Stoyanov

(2012). The graphs o

ur very useful also in the le
turer pra
ti
e of the author.

Fig. 6. Solid 
urves: upper bounds of the two-sided 
on�den
e intervals for the Fisher test,

based on the s
ore s/s0 (for s > s0) with bounds given in (4.3) for 95 % and 99 % statisti
al

guaranty, in dependen
e on the data number n. Dashed 
urves: upper bounds of the one-

sided 
on�den
e intervals for the Pearson test, based on the s
ore s/σ (for s > σ) with

bounds given in (4.2") for 95 % and 98 % statisti
al guaranty, in dependen
e on the data

number n.
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