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Abstract. Free-floating planets are recently drawing a special interest among the scientific
community. Gravitational microlensing is up to now the exclusive method for the study of
this Galactic population. In this work we find that the future Euclid space-based observatory
can discover a substantial number of microlensing events in its field of view, caused by free-
floating planets. Making use of a synthetic population, we investigate also the importance of
using the parallax effect as an additional source of information. We conclude about the best
positions of the Earth in its orbit for obtaining the greatest number of events with parallax
traces.
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1. INTRODUCTION

A useful method for detecting extremely faint or completely dark objects in
our Galaxy is the gravitational microlensing, which happens when the gravi-
tational field of these bodies acts as a lens to magnify background source stars
(Paczyński, 1986). A gravitational lens is characterized by its Einstein ring
radius,

RE(M,x) =

√

4GMDs

c2
x(1− x) , (1)

the radius of the ring image formed when the observer, the lens and the source
are perfectly aligned. Here M is the mass of the lens; x = Dl/Ds is the
normalized lens distance; Ds, Dl are the source-observer and lens-observer
distance.

In the case of Galactic lenses, the image separation is too small to be
resolved and the observable feature is the variation in time of the light mag-
nification, due to the lens-source relative motion. A microlensing event is thus
obtained, whose key parameter is the Einstein radius crossing time, given by
Paczyński (1986)

TE =
RE

vT
, (2)

with vT -the relative transverse velocity between the lens and the source.

In the standard case, the lens and the source are considered as points with
a relative motion linear and constant. The total magnification of the source
luminosity in such microlensing events is found to be:

As =
u2(t) + 2

u(t)
√

u2(t) + 4
, (3)
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where

u(t) =

√

u20 +

(

t− t0
TE

)2

, (4)

is the separation between the lens and the line of sight in units of RE ; u0 is
the minimum separation, named impact parameter, occurring at the moment
of the peak magnification t0. The light curve obtained by equation (3) is
symmetric around t0.

When the projected separation is u = 1, the amplification takes a specific
value known as threshold amplification Ath = 1.34. However, the space-based
telescopes can detect amplifications much smaller than 1.34 (Byalko, 1970).
For Ath = 1.001, as expected in nowadays telescopes, the maximum value of
u in equation (3) turns out to be umax = 6.54.

A standard microlensing light curve (3) is described by three parameters,
t0, TE and u0, but only one of them, the Einstein radius crossing time TE
contains useful information about the lens: its massM , the transverse velocity
vT and the distance Dl. For breaking this triple degeneracy, several additional
methods are proposed, one of them based on the consideration of the parallax
effects induced in the light curve due to the motion of the Earth around the
Sun. Free-floating planets are a recently discovered population of planetary-
mass objects either very distant from their host stars (over 100 AU) or entirely
unbound. Their existence is reported by MOA-II mission (Sumi et al. 2011),
based on evidences of light curves corresponding to small, planetary mass
objects.

The aim of our work is the investigation of the best Earth positions in
its orbit for observing parallax effects induced in microlensing events of free-
floating planets. We are focused on the observations towards Galactic centre
foreseen to be performed by Euclid, an European mission in preparation to
be launched in 2017. In Section 2 we review the microlensing method and its
parameters in the case of Euclid observations; in section 3 we show how the
parallax motion have effects on microlensing curves; in section 4 we discuss
about free-floating planets, their mass function and the spatial and velocity
distribution models; in section 5 we discuss the results obtained; in section 6
we draw the main conclusions.

2. MICROLENSING EVENTS TOWARDS THE GALACTIC
BULGE

Several microlensing surveys, as MOA (Microlensing Observations in Astro-
physics) Collaboration (Bond et al. 2001) and OGLE (Optical Gravitational
Lensing Experiment) Collaboration (Sumi et al. 2006), have been undertaken
since about two decades towards the Galactic bulge with the aim of searching
for MACHOs (Massive Astrophysical Compact Halo Objects) and exoplanets.
These surveys have allowed the detection of several thousands of microlensing
events, a fraction of them due to objects different from stars.

Microlensing observations are affected by the presence of the Earth atmo-
sphere that is a source of Poisson’s noise, which sets up an unavoidable lower
limit to the mass of lens. A way to circumvent this limit is to go in space
(Bennett & Rhie 2002). At present, there are two space-based missions which
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are planned for detecting microlensing events towards the Galactic bulge: the
Wide-Field Infrared Survey Telescope (WFIRST)(Green et al. 2012) and Eu-
clid.

Euclid is a Medium Class mission of the ESA (European Space Agency).
During ten months, not necessarily consecutive, it will hunt for microlensing
events towards Galactic Bulge. The Galactic coordinates of the Euclid line of
sight are b = −1.7◦, l = 1.1◦, the distance of observation can be considered
Ds = (7− 10) kpc, with mean value at Ds = 8.5 kpc and the observing image
rate (cadence) is expected to be about 20 min (Laureijs et al. 2011).

In order to find the number of expected microlensing events to be detected
by the Euclid mission we use the definition of the microlensing rate (Jetzer et
al. 2002):

Γ =

∫

n(x)f(vl − vt)f(vs)dxdvldvs

dt
, (5)

where vl, vs and vt are the lens, the source and the microlensing tube two-
velocities in the plane transverse to the line of sight; x = Dl/Ds; n(x) is the
number density of the lens population. The microlensing rate is the number
of events per unit time and per monitored star due to the lens population.

The velocity distribution functions f(vl) and f(vs) are assumed to have
Maxwellian forms (Han & Gould 1995, Han & Gould 1996). The tube velocity
is given by

v2t (x) = (1− x)2v2⊙ + x2v2s + 2x(1− x)v⊙vs cos θ , (6)

where v⊙ is the local velocity transverse to the line of sight and θ is the angle
between v⊙ and vs.

The definition above corresponds to Ath = 1.34. For other values of Ath,
we multiply the result by the corresponding value of umax (Griest, 1991). In
the case of observations towards Galactic center, the source stars are bulge
stars which are distributed following a triaxial mass density model (Dwek et
al. 1995):

ρ(x, y, z) = Mb

8πabce
−s2/2

s4 = (x2/a2 + y2/b2)2 + z4/c4 ,
(7)

where the parameters are Mb ∼ 2× 1010 M⊙, a = 1.49 kpc, b = 0.58 kpc and
c = 0.40 kpc.
The limiting line flux of Euclid Telescope is Fl = 3× 10−19Js−1m−2, whereas
the flux of a Sun-like star situated at the Galactic center is F⊙ = 4.44 ×
10−16Js−1m−2. Based on the mass-luminosity relation L

L⊙
= ( M

M⊙
)2.4 for low-

mass stars (M < 0.8M⊙), it can be directly shown that the telescope can
observe all bulge stars.

The mean mass of bulge stars is < M >= 0.28M⊙, found by using the
mass function dN

dM ∼ M−2.35 (Salpeter, 1955). The Euclid’s field of view is
0.54 square degree, hence the number of source stars in Euclid microlensing
observations will be NED = 2.23 × 108. This number has to be multiplied
with the microlensing rate (5) and the time of observation for providing us the
estimated number of microlensing events expected to be detected.
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3. PARALLAX EFFECT

The motion of the Earth around the Sun may leave in microlensing events some
traces which can be used to break the degeneracy of microlensing parameters in
the standard curve. We are focused here on the investigation of parallax traces
during the observation by the Euclid telescope of microlensing events caused
by free-floating planets. For this reason, we make use of some geometrical
relations (Dominik, 1998).

The Earth trajectory is an ellipse, given in polar coordinates (r, ϕ) by

r(ϕ) =
a⊕(1− ǫ2)

1 + ǫ cosϕ
, (8)

where a⊕ is the semi-major axis, ǫ is the eccentricity of the earth orbit. The
minimal value rmin = a⊕(1− ǫ) is obtained for ϕ = 0, and the maximal value
rmax = a⊕(1 + ǫ) for ϕ = π.

Therefore, one can express the curve with a parameter ξ as

r(ξ) = a⊕(1− ǫ cos ξ) . (9)

The components along the semi-major axis (x-direction) and the semi-minor
axis (y-direction) follow as

x(ξ) = a⊕(cos ξ − ǫ) , (10)

y(ξ) = a⊕
√

1− ǫ2 sin ξ . (11)

The time dependence ξ(t) is implicitly given by

t =

√

a3⊕
GM⊙

(ξ − ǫ sin ξ) , (12)

so that t = 0 corresponds to the points (rmin, 0). In general, this equation
cannot be solved analytically, but only numerically.

Considering the position of the Earth on its trajectory, the amplification in
a microlensing light curve, maintaining the point-like approximation for lenses
and sources, will be calculated according to the following formulas (Dominik,
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1998):

Ap =
u2(t)+2

u(t)
√

u2(t)+4
,

u2(t) = p2(t) + d2(t),

p(t) = p0(t) + cosψ[x1(t)− x1(t0)]+
+ sinψ[x2(t)− x2(t0)],

d(t) = d0 − sinψ[x1(t)− x1(t0)]+
+ cosψ[x2(t)− x2(t0)],

x1(t) = ρ[− sinχ cosφ(cos ξ(t)− ǫ)−
− sinχ sinφ

√
1− ǫ2 sin ξ(t)],

x2(t) = ρ[− sinφ(cos ξ(t)− ǫ)+
+ cosφ

√
1− ǫ2 sin ξ(t)],

ρ = a⊕(1−x)
RE

, p0(t) =
(t−t0)
TE

, d0 = u0

, (13)

with ρ-the length of the semi-major axis projected to the lens plane measured
in Einstein radii.

The parameters φ, χ and ψ in relations (13) give, respectively, the longitude
measured in the ecliptic plane from perihelion towards the Earth motion, the
latitude measured from the ecliptic plane towards the northern point of the
ecliptic and the rotation angle in the lens plane which describes the relative
orientation of velocity vT to the sun-earth system. Using the relations between
these two coordinate systems, we find the following values for the Euclid’s line
of sight: φ ≃ 167.8◦ and χ ≃ −5.4◦.

The parallax effect is estimated by calculating the residuals between the
light curve Ap(t) from eqs. (13) and the corresponding standard curve As(t)
from eq. (3), that is

Res = |As(t)−Ap(t)| . (14)

This effect is sensibly dependent on the Earth position in its orbit around the
Sun (ξ0-the Earth position at the time of the maximum amplification). In Figs.
1, 2 we show the parallax effect in its two extreme cases, which correspond
respectively to ξ0 = 75◦ and ξ0 = 165◦. The calculations consider the same
object with mass 10−3M⊙ situated at the distance Dl = 4.5 kpc.

Note that ξ0 = 165◦ would be the best position of the Earth for inducing
the strongest influence of the parallax effect on microlensing light curves, since
the maximum of the residuals is around ten times higher than for ξ0 = 75◦.
In Section 5 we show and discuss our numerical calculations for the number
of microlensing events with parallax effects resolvable by Euclid in different
positions of the Earth around the Sun, based on the abilities of this satellite.
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Fig. 1. Above: the standard curve (solid line) and the parallax curve (dashed line) for ξ0 =
165◦. Below: the residuals between them. The Einstein time is 2.24 days.

4. PLANETARY POPULATION

In a recent survey of the Galactic bulge, the MOA-II collaboration (Sumi
et al. 2011) reported the discovery of free-floating planets, planetary-mass
objects either very distant from their host stars (more than 100 AU away) or
entirely unbound. By analyzing the timescale distribution of all the observed
microlensing events, they found a statistically significant excess of events with
timescale t < 2 days.

In order to account for the observed excess of these events, Sumi et al.
(2011) assumed a free-floating planet’s mass function with a power-law form
as follows:

dN
dM = kPLM

−αPL ,

αPL = 1.3+0.3
−0.4 ,

10−5M⊙ < M < 10−2M⊙ .

(15)

The derived number of planetary mass objects per star turned out to be very
large, although rather poorly constrained: NPL = 5.5+18.1

−4.3 , due to the low sen-

sitivity of the instrument at the lower bound of lens masses (below 10−4M⊙).
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Fig. 2. Above: the standard curve and the parallax curve for ξ0 = 75◦. The distinction
between them is too small to be noticed. Below: the residuals between them. The Einstein
time is 2.24 days.

In regard to the free-floating planet distribution, we assume that these ob-
jects follow spatial and velocity star distribution. This assumption is based on
the idea that they are most likely formed in proto-planetary disks and sub-
sequently scattered into unbound or very distant orbits. Therefore, as to the
free-floating planets spatial distribution, we use the same as for stars (Gilmore
et al. 1989, De Paolis et al. 2001, Hafizi et al. 2004):

1. Double exponential disk,

ρ(R, z) = ρ0(M) e−|z|/H e−(R−R0)/h , (16)

in cylindrical coordinates R (the galactocentric distance in the Galactic plane)
and z (the distance from Galactic plane). The scale parameters are H ∼ 0.30
kpc, h ∼ 3.5 kpc for the thin component; H ∼ 1 kpc, h ∼ 3.5 kpc for thick
component and R0 = 8.5 kpc is the local galactocentric distance.

2. Triaxial bulge (Dwek et al. 1995, De Paolis et al. 2001, Hafizi et al.2004):

ρ(x, y, z) = ρ0(M)e−s2/2

s4 = (x2/a2 + y2/b2)2 + z4/c4 ,
(17)
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where a = 1.49 kpc, b = 0.58 kpc, c = 0.40 kpc. For the free-floating planet
velocity distribution we assume the Maxwellian distribution (Han & Gould
1995, Han & Gould 1996), where each component is given by

f(vi) ∼ exp
−

(vi−vi)
2

2σ2
i , i ∈ {x, y, z} , (18)

where the coordinates (x, y, z) have their origin at the Galactic center and the
x and z-axes point to the Sun and the north Galactic pole, respectively.

We are interested only in the perpendicular velocity with respect to the line
of sight, namely on y and z components. For lenses in the Galactic bulge we
use the mean velocity components vy = vz = 0, with dispersion σy = σz = 100
km/s; for lenses in the Galactic disk we use the mean velocity components
vy = 220 km/s, vz = 0, with dispersion velocity σy = σz = 30 km/s for the
thin disk and σy = σz = 50 km/s for the thick disk.

5. RESULTS

The first step was the calculation of the microlensing rate Γ (5) for all popula-
tions of free-floating planets: thin disk, thick disk and bulge, considering spatial
distributions (16), (17), coupled with the mass functions (15), αPL varying
from 0.9 to 1.6. This microlensing rate, which corresponds to Ath = 1.001,
needs to be multiplied by umax = 6.54, as discussed before. The number of
microlensing events is derived by the multiplication of Γ with the number of
source stars in the Euclid field of view NED = 2.23 × 108 and the time of
observation, one month.

In Tab.1 we show the number of microlensing events per month towards
our Galactic center, found theoretically based on considerations presented in
previous sections. This number varies for different values of the index param-
eter αPL.

Table 1. The estimated number of microlensing events per month caused by
free-floating planets assumed with different values of the mass function index
αPL.

NPL = 1.2 NPL = 5.5 NPL = 23.6
αPL Bulge Dthin Dthick Bulge Dthin Dthick Bulge Dthin Dthick

0.9 317 17 13 1451 76 61 6227 328 262
1.0 270 14 11 1238 65 52 5310 280 223
1.1 227 12 10 1038 55 44 4455 235 188
1.2 188 10 8 862 46 36 3701 195 156
1.3 156 8 7 713 38 30 3061 162 129
1.4 129 7 5 593 31 25 2544 134 107
1.5 109 6 5 498 26 21 2135 113 90
1.6 93 5 4 424 22 18 1820 96 77

Note that the bulge population of free-floating planets provides the most
important contribution in the number of microlensing events observed. For
estimating the ratio of events with resolvable parallax effect, we generate nu-
merically a large number of synthetic events towards the Euclid field of view
by Monte Carlo method. We draw:
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a) lens distances Dl, based on the disk and bulge spatial distributions in
eqs.(16), (17). The source stars are considered as fixed at the Galactic center,
Ds = 8.5 kpc, for all events;

b) the relative transverse velocity based on the velocity distribution in eq.
(18);

c) the impact parameter randomly distributed in a uniform interval [0,6.54]
(Strigari, 2012);

d) the lens mass that follows the mass function distribution in eq. (15).
Here, for the mass function index of free-floating planets in bulge, thin disk
and thick disk we fix the value αPL = 1.3 as a mean value of the interval;

For each case we calculate the standard curve by eq. (3) and the curve
containing the parallax effect by eq. (13), maintaining for all cases the point-
like approximation for lenses and sources. The points in each curve are taken
every 20 minutes, according to the observing image rate (cadence) of the in-
strument.
We vary the position of the Earth in its orbit taking one point for each month,
beginning at ξ0 = 15◦ (January). This position corresponds to the time t0 of
the event’s peak light curve, found by the implicit relation (13).

We assume that a microlensing event can be detected if in its light curve
there are at least 8 points with amplification higher than the threshold ampli-
fication Ath = 1.001. The photometric error in this case is 0.1%:

AthF − F = F (Ath − 1) = ∆F⇒(Ath − 1) =
∆F

F
= 1.001− 1 = 0.001 . (19)

For estimating the parallax effect on the observed light curves, we consider
only those containing at least 8 points with Res > 0.001 inside Einstein ring:

|As(t)F −Ap(t)F | > ∆F⇒|As(t)−Ap(t)| >
∆F

F
⇒Res > 0.001 . (20)

The efficiency of the parallax effect detection is defined as the ratio be-
tween the number of events fulfilling the condition (20) with the the total
number of detectable events. In Tab. 2 we show the results of our calcula-
tions for the efficiency of the parallax effect detection during different months
of the year. In fact, the perihelion corresponds to the beginning of January,
so ξ0 = 15◦ is about the middle of January and the same for the other months.
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Table 2. The efficiency of the parallax effect detection during different months
for free-floating planets distributed in bulge, thin and thick disk.

Month ξ0 Bulge Dthin Dthick

January 15◦ 0.32 0.31 0.31
February 45◦ 0.27 0.27 0.27
March 75◦ 0.15 0.17 0.16
April 105◦ 0.26 0.26 0.26
May 135◦ 0.30 0.30 0.30
June 165◦ 0.32 0.31 0.31
July 195◦ 0.31 0.30 0.30
Augustt 225◦ 0.26 0.27 0.26
September 255◦ 0.15 0.17 0.16
October 285◦ 0.26 0.26 0.26
November 315◦ 0.31 0.30 0.30
December 345◦ 0.32 0.32 0.32

Let us fix our following discussion on the most plausible value of the num-
ber of free-floating planets per star: NPL = 5.5. The theoretical number of
microlensing events in such a case is shown in the fifth row and second column
of the Table 1: 713 for planets in the bulge, 38 for planets in the thin disk and
30 for planets in the thick disk. We multiply the efficiency with these numbers
to find the theoretical number of microlensing events with parallax effect, as
in Tab. 3.

Table 3. The theoretical number of microlensing events with parallax effect
predicted to be detected by Euclid during different months of one year.

Month ξ0 Bulge Dthin Dthick Total

January 15◦ 225 12 9 246
February 45◦ 192 10 8 210
March 75◦ 105 7 5 117
April 105◦ 184 10 8 202
May 135◦ 217 11 9 237
June 165◦ 227 12 9 248
July 195◦ 220 12 9 240
August 225◦ 188 10 8 206
September 255◦ 104 7 5 116
October 285◦ 184 10 8 202
November 315◦ 220 11 9 241
December 345◦ 229 12 10 251

Note that the best period of the year for performing microlensing surveys
by Euclid are December and June, if we look for having the highest number of
light curves with resolvable traces of the parallax effect. Being aware that the
threshold amplification Ath = 1.001 is only an instrument limit, we further-
more tested our results for a higher threshold amplification Ath = 1.01, taking
into account observational conditions like the variability of stars (Ciardi 1998).

With this new limit and based on similar calculations we find an efficiency
about 10% lower than before and a number of microlensing events with par-
allax effect about 2.5 times lower, too. Anyway, this change did not affect our
main result about December and June as the best periods for such kind of
observations.
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6. CONCLUSIONS

Obviously, the aim of our study is the investigation of the parallax effect,
induced due to the motion of the Earth around the Sun, as an additional
condition for a best observation of free-floating planets towards the Galactic
bulge. These observations are planned to be carried out by the future Eu-
clid space-based observatory, via detection of microlensing light curves of the
source stars. We look for those curves which could provide us with supple-
mentary information on lenses, aside from the standard parameter, Einstein
radius crossing time.

We settle on recent knowledge about free-floating planets, their mass func-
tion and their velocity and space distributions. We are limited here on point-
like source and lens approximation, without considering the finite dimensions
of sources and lenses. Making use of numerical methods for generating syn-
thetic microlensing events observable from the Euclid mission in different po-
sitions of the Earth around its orbit, we find that the best periods for this
observation are December and June.
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