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Abstract. To be able to explain more precisely the structure, origin and evolution of the
Solar system we need to know more relations between orbital elements of the bodies in the
Solar system. The aim of this work is to find relations between the synodic periods of the
bodies in the Solar system, so that their ratio is a simple integer ratio and to ask what
is due to their existence. Whether are they just a coincidence or is their origin a result
of the evolution of the Solar system? Also some relations between mean longitudes of the
bodies in the Solar system that are similar to relationship between the mean longitudes
of the Jupiter’s satellites Io, Europa and Ganimed are derived. It is explained what is
the reason of the existence of some of them. Further particular solutions of the four-body
problem using the perturbation theory approach could explain the nature of other. A period
of configuration repetition of three planets is defined. It is named a synodic (gr. συνoδ -
companion) period of three-planets because if the three planets are initially in a line from
one side of the Sun, i.e. closest to each other, after this period they will be ”companions”
again. All the planets in the Solar system, the dwarf planets Ceres and Pluto, the first
four discovered asteroids: 2 Pallas, 3 Juno, 4 Vesta, 5 Astraea and main resonant asteroids
with Jupiter: 279 Thule (3:4), 153 Hilda (2:3), 108 Hecuba (1:2), 1362 Griqua (1:2), 8
Flora (2:7), 887 Alinda (1:3), 434 Hungaria (1:4) are objects of research in the current
study and all of them are involved in three-planet resonances. In general the three-planet
resonances are more in number and more accurate than the two-planet orbital resonances.
It was found that there are relations between the mean motions of four bodies. These four-
planet resonances will be subject to a further study. Our initial calculations show that there
is a relation between the mean motions of all terrestrial planets, dwarf planet Ceres and
Jupiter and there is a relation between the mean motions of all giant planets and dwarf
planet Pluto. More detailed study of such resonances could be explained the structure and
the origin of the Solar system.
Key words: mean motion resonance, three-planet resonance, synodic period, mean longi-
tude, syzygy, Solar system

Три-планетни резонанси в Слънчевата система

Борислав Станишев Борисов

За да можем да обясним по-точно структурата, произхода и еволюцията на Слънчевата
система, трябва да знаем повече зависимости между орбитните елементи на телата
от Слънчевата система. Целта на настоящата разработка е да се намерят връзки
между синодичните периоди на телата от Слънчевата система, такива че отношението
им да е равно на отношението на две цели числа и да зададе въпроса на какво се
дължат. Дали те са просто случайност или се дължат на еволюцията на Слънчевата
система? Също така са получени връзки между средните дължини на телата от
Слънчевата система, подобни на тази между средните дължини на спътниците на
Юпитер - Йо, Европа и Ганимед. Обяснена е причината за съществуването на някои
от тях. Бъдещи частни решения на задачата за четири тела, като се използва теорията
на пертурбациите, биха могли да обяснят природата на други факти. Дефинира се
период на повторение на конфигурация на три планети. Той се нарича синодичен
(гр. συνoδ - придружител) период на три планети, защото, ако тези три планети
първоначално са подредени в линия от едната страна на Слънцето, т.е. най-близо
една до друга, след този период те отново ще се ”придружават”. В изследването
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са включени всички планети от Слънчевата система, планетите-джуджета Церера и
Плутон, първите четири открити астероида: 2 Палада, 3 Юнона, 4 Веста, 5 Астрея
и основните резонансни астероиди с Юпитер: 279 Туле (3:4), 153 Хилда (2:3), 108
Хекуба (1:2), 1362 Гриква (1:2), 8 Флора (2:7), 887 Алинда (1:3) и 434 Унгария (1:4).
Всички разгледани тела влизат в три-планетни резонанси. Като цяло три-планетните
резонанси са повече и по-точни от двупланетните орбитни резонанси. Установено е,
че съществуват връзки между средните движения на четири тела. Такива четири-
планетни резонанси ще бъде предмет на по-нататъшно изследване. Нашите първона-
чални изчисления показват, че от една страна има връзка между средните движения
на всички планети от земен тип, планетата-джудже Церера и Юпитер, а от друга
страна съществува връзка между средните движения на всички планети-гиганти и
планетата-джудже Плутон. По-детайлно изучаване на такива резонанси би могло да
дообясни структурата и произхода на Слънчевата система.

Introduction

There are different kinds of resonances in the Solar system. Two-planet mean
motion orbital resonances are the resonances Jupiter - Saturn (2:5) (Great
inequality) [2001, Michtchenko & Ferraz-Mello], Hilda - Jupiter (3:2), Hecuba
- Jupiter (2:1) and Neptune - Pluto (3:2) [1976, Peale]. A spin orbital res-
onance occurs when the ratio of the orbital period and the rotation period
of a body is a simple integer ratio. Such resonances are: Moon - Earth (1:1),
Io - Jupiter (1:1) and Mercury - Sun (3:2). There is a relation between the
Venus rotation period, its orbital period and the orbital period of the Earth
[1967, Goldreich & Peale]:

4

PV

−
5

PE

+
1

Pr
= 0, (1)

where Pr = −243 dy is the Venus rotation period and PV and PE are the
orbital periods of Venus and Earth respectively. In consequence of this de-
pendence at each Venus conjunction the same side of Venus is facing the
Earth.

In 1619 Kepler wrote about the resonance structure of the Solar system
[1969, Gingerich], [1939, Kepler], [1997, Kepler & al.]. In ”Orbital resonances
in the Solar System” [1976, Peale] Peale explores the main resonances. A clas-
sic example of a three-planet resonance is the motion of the Galilean satel-
lites of Jupiter: Io, Europa and Ganymede. It is named Laplace resonance.
Europa’s orbital period is approximately twice Io’s period and Ganymede’s
orbital period is approximately twice Europa’s period. The exact relation is:

1

PIo

−
3

PEu

+
2

PGa

= 0. (2)

It can be written as:

PEuGa = 2PIoEu. (3)
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I.e. the synodic period of Europa and Ganymede PEuGa is twice the syn-
odic period of Io and Europa PIoEu.

There is a similar correlation between the orbital periods of Venus, Earth
and Mars [2011 a, Wilson]:

3

PV

−
7

PE

+
4

PMa

≈ 0. (4)

The last equation shows that the ratio of the synodic periods of Venus
and Mars is approximately equal to 3/4. If Venus, Earth and Mars form a
configuration, then after a time equal to four Venus synodic periods (6.4 yr),
they will form the same configuration with a deviation of 1◦. The mismatch
time1 is 1000 yr.

Other relations between the mean motions of the planets are known [1968,
Molchanov]:

nMa − 6nJ − 2nU ≈ 0,

nV − 3nMa − nS ≈ 0, (5)

nS − 5nN + nPl ≈ 0.

In ”The reality of resonances in the solar system” Molchanov continues
his works on resonances [1969, Molchanov] [1969, Gingerich]. In ”Resonant
Structure of the Outer Solar System in the Neighborhood of the Planets”
[2001, Michtchenko & Ferraz-Mello] the stability of the Solar system is exam-
ined, using following relation between the mean motions of the giant planets
Jupiter, Saturn and Uranus:

3nJ − 5nS − 7nU ≈ 0. (6)

In ”The web of three-planet resonances in the outer Solar System” Mas-
similiano Guzzo [2005, Guzzo] numerically detects the web of three-planet
resonances (i.e., resonances among mean anomalies, nodes and perihelia of
three planets) with respect to the variation of the semi-major axis of Sat-
urn and Jupiter. In ”The Role of Resonances in Astrodynamical Systems”
Rudolf Dvorak [2010, Dvorak] explores relations between the mean motions
of asteroids and the giant planets Jupiter and Saturn.

In this article we look for similar to equations (2) and (4) relations be-
tween the orbital periods of the bodies in the Solar system. All the planets
in the Solar system, the dwarf planets Ceres and Pluto, the first four discov-
ered asteroids: 2 Pallas, 3 Juno, 4 Vesta, 5 Astraea and the main resonant
asteroids with Jupiter: 279 Thule (3:4), 153 Hilda (2:3), 108 Hecuba (1:2),
1362 Griqua (1:2), 887 Alinda (1:3), 8 Flora (2:7?), 434 Hungaria (1:4) are
included here. The resonance Flora - Jupiter is controversial, but this aster-
oid is included as it is considered that the Flora family consists of more than
5000 members and it represents 4-5% of all main-belt asteroids.

1 time for the rotation of the middle body by 180◦ to the initial configuration
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In Table 1 are shown the mean motions of the planets and the dwarf
planets Ceres and Pluto.

Table 1. Mean motions of the terrestrial planets and Ceres

Planet Mercury Venus Earth Mars Ceres

n[◦/dy] 4.092338799 1.602130477 0.985609113 0.524032836 0.214328175

Planet Jupiter Saturn Uranus Neptune Pluto

n[◦/dy] 0.083091189 0.033459652 0.011730787 0.005981826 0.00397846

Table 2 and Table 3 give the mean motions of the considered asteroids.
The values for the planets are taken from ”Astronomical yearbook” [1987,
Астрономический ежегодник] and for the asteroids and the dwarf planets
Ceres and Pluto - from Jet Propulsion Laboratory (JPL) [JPL Small-Body
Database Browser].

Table 2. Mean motions of the first four discovered asteroids and 8 Flora

Asteroid 2 Pallas 3 Juno 4 Vesta 5 Astraea 8 Flora

n[◦/dy] 0.213539504 0.225761927 0.271524121 0.238688795 0.363520232

Table 3. Mean motions of main resonant asteroids with Jupiter

Asteroid 434 Hungaria 887 Alinda 1362 Griqua 108 Hecuba 153 Hilda 279 Thule

n[◦/dy] 0.301827948 0.252689529 0.17083233 0.16878079 0.12451537 0.11160121

1 A mathematical approach for finding a three-planet
resonance

Let’s we have three bodies with orbital periods P1, P2, P3 and P1 < P2 < P3.
P12 is the synodic period of the first and the second body:

1

P12

=
1

P1

−
1

P2

(7)

and P23 is the synodic period of the second and the third body:

1

P23

=
1

P2

−
1

P3

. (8)

There is a three-planet resonance if the ratio of the synodic periods P12

and P23 is a simple integer ratio:

P12

P23

=
i

j
, i, j = 1, 2, 3, ... (9)
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The last equation can be written as:

in1 − (i+ j)n2 + jn3 = 0, (10)

where n1, n2, n3 are the mean motions of the planets.
Because P1 < P2 < P3, the period of configuration repetition Pij of the

three planets can be derived from:

Pij =
360◦ (i+ j)

n1 − n3

= (i+ j)P13, i, j = 1, 2, 3, ... (11)

where P13 is the synodic period of the first and the third planets. The period
Pij will be named synodic (gr. συνoδ - companion) because if the three
planets are initially in a line from one side of the Sun, i.e. closest to each
other, after this period they will be ”companions” again.

Fig. 1. Initial configuration of the tree planets (left) and configuration after the synodic
period Pij (right)

Let the three planets lay in one line with the Sun (Fig.1). The deviation
of the mean longitudes of the planets ϕ for time equal to the synodic period
Pij is calculated from:

ϕ = ∆λ1 −∆λ2, (12)

where ∆λ1 and ∆λ2 are the changes of the mean longitudes of the first and
the second planet respectively.

The deviation per year ψ can also be taken to determine the accuracy of
the resonance:

ψ =
ϕ

Pij [yr]
, i, j = 1, 2, 3, ... (13)
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The time of mismatch Pm can be derived from:

Pm =
180◦Pij

ϕ
, i, j = 1, 2, 3, ... (14)

The relation (10) is approximately true. We can write an exact equation:

i

P ′

1

−
(i+ j)

P2

+
j

P3

= 0, i, j = 1, 2, 3, ... (15)

where P ′

1 is approximately equal to P1:

P ′

1 = P1 +∆P1 (16)

and ∆P1 is a small value. The quantity ∆P1/P1 can also be used to deter-
minate the accuracy of the resonance between the tree planets. In this work
the maximum value of |∆P1|/P1 is 1%.

It can be introduced two more small parameters to determine the accuracy
of the resonance:

in1 − (i+ j)n2 + jn3

n1 − n3

,

iP23 − jP12

(i+ j)P13

.

Here three-planet resonances are calculated using the following algorithm:

1. Input n1, n2, n3.
2. Calculate n12/n23 from:

n12

n23

=
n1 − n2

n2 − n3

. (17)

3. Check n12/n23 > 1.

4. Input the index i = 1. (If n12/n23 ≤ 1 the index j is input.)
5. Calculate the index j from:

j = i

[

n12

n23

]

, (18)

where [n12/n23] is the closest integer number approximately equal to the
ratio n12/n23.

6. Calculate Pij , ϕ, ψ, Pm, ∆P1 and ∆P1/P1.
7. Input a new value of the index i, i := i + 1 and repeat the process from

step 5.

The process stops when |∆P1|/P1 ≤ 0.01 for i and it is smaller than
|∆P1|/P1 for i + 1. In almost all resonances considering here the values of i
or j is smaller or equal to 5.
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2 Three-planet resonances, including a terrestrial planet

In Table 4 are given the synodic periods of the terrestrial planets, the dwarf
planet Ceres and Jupiter.

Table 4. Synodic periods of the terrestrial planets, Ceres and Jupiter in days

Planet Venus Earth Mars Ceres Jupiter

Mercury 144.5662183 115.8774777 100.8882096 92.8311021 89.7924087

Venus 583.9213707 333.9215172 259.4029420 236.9918953

Earth 779.9360970 466.7559931 398.8840447

Mars 1162.3977480 816.4345610

Ceres 2743.1291270

Table 5. Three-planet resonances, including a terrestrial planet

Resonance i:j Pij [yr] ϕ [◦] ψ [′] Pm [yr] ∆P1 [dy] ∆P1/P1 10−3

Venus, Earth, Mars 3:4 6.40 1 10 1059 0.15 1

Earth, Mars, Ceres 2:3 6.39 3 26 413 -1.10 -3

Venus, Earth, Ceres 5:4 6.39 1 6 1762 -0.07 0

Venus, Mars, Ceres 2:7 6.39 3 29 378 -0.82 -4

Mercury, Mars, Ceres 2:23 6.35 1 12 919 0.14 2

Mercury, Earth, Ceres 1:4 1.27 2 95 114 0.47 5

Mercury, Venus, Earth 1:4 1.59 3 106 102 0.52 6

Mercury, Venus, Mars 3:7 2.76 8 167 65 -0.54 -6

Mars, Ceres, Jupiter 3:7 22.35 9 23 471 4.60 7

Venus, Earth, Jupiter 3:2 3.24 11 195 55 2.10 9

Venus, Earth, Jupiter 41:28 44.77 2 2 4947 0.02 0

Mercury, Venus, Jupiter 3:5 1.97 11 341 32 -0.88 -10

Among three-planet resonances presented in Table 5, two of the most
accurate are Venus - Earth - Mars and Earth - Mars - Ceres. Both resonances
have almost equal synodic period 6.4 yr. Therefore after a period equal to
nine Venus - Ceres synodic periods the four bodies will conserve their initial
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configuration (Fig.2) and according to (11) we have:

PV Ma

PECe

≈
5

7
. (19)

The last equation can be written as follows:

5nV − 7nE − 5nMa + 7nCe ≈ 0. (20)

Fig. 2. Configuration of Venus, Earth, Mars and Ceres on 09.02.1995 and 02.07.2001

From the formulae that express the resonances Venus - Earth - Mars:

3nV − 7nE + 4nMa ≈ 0 (21)

and Earth - Mars - Ceres:

2nE − 5nMa + 3nCe ≈ 0 (22)

are obtained relations between the mean longitudes of the bodies. At present
these relations are:

3λV − 7λE + 4λMa ≈ 180◦,

2λE − 5λMa + 3λCe ≈ 0◦. (23)

The first of these relations shows that the planets Venus, Earth and Mars
can’t lie in a line on the same side of the Sun (Fig.3). The second one shows
that the planets Earth, Mars and dwarf planet Ceres can lie in a line on the
same side of the Sun (Fig.2) In comparison with (23) the analogous relation
of the Galilean satellites Io, Europa and Ganymede is:

λIo − 3λEu + 2λGa ≈ 180◦. (24)
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Fig. 3. Configuration of Venus, Earth and Mars on 15.01.1994 and 29.03.1997

Let’s to remind that the angle between three bodies in the partial solu-
tions of the three-body problem are 0◦, 60◦ or 180◦ and they doesn’t depend
from the masses of the bodies. Further partial solutions of the four-body prob-
lem using the perturbation theory approach could be explain the relations
between mean longitudes of Venus, Earth, Mars and Ceres.

From the equations (23) are obtained similar to (20) relations:

λV − 3λE + 3λMa − λCe ≈ 60◦,

λV − λE − 2λMa + 2λCe ≈ 60◦. (25)

The first of these relations shows that after a period equal to three Venus
- Ceres synodic periods (2.13 yr) Venus - Ceres and Mars - Earth in pairs
will conserve their configurations (Fig.4).

Fig. 4. Configuration of Venus, Earth, Mars and Ceres on 06.05.1995 and 23.06.1997
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The second one shows that after the Mars - Ceres synodic period (3.2 yr)
Venus - Earth and Mars - Ceres in pairs keep their configurations (Fig.5).

Fig. 5. Configuration of Venus, Earth, Mars and Ceres on 08.07.1993 and 12.09.1996

Some of the resonances in Table 5 are the mathematical consequence from
others. For example: if the mean motions of Mars and Earth are excluded
from the equations (21) and (22) it is obtained the equations that express
the third and the forth resonance respectively.

If the mean motion of Earth is excluded from the equations (21) and from
the equation that expresses the resonances Mercury - Venus - Earth:

nM − 5nV + 4nE ≈ 0 (26)

it is derived an equation that expresses a three-planet resonance between
Mercury, Venus and Mars:

7nM − 23nV + 16nMa ≈ 0. (27)

This resonance has a synodic period 6.35 yr, what is approximately equal
to the synodic periods of the resonances Venus - Earth - Mars and Earth -
Mars - Ceres. Therefore the resonance Mercury - Venus - Mars (Table 5) is
not in an agreement with other resonances and it must be considered as a
coincidence.

The resonance Mercury - Mars - Ceres can be derived from the resonances
Mercury - Venus - Earth, Venus - Earth - Mars and Earth - Mars - Ceres and
it is only a mathematical consequence of upper resonances.

The three-planet resonance Venus - Earth - Jupiter (41:28) is taken from
”Do Periodic Peaks in the Planetary Tidal Forces Acting Upon the Sun In-
fluence the Sunspot Cycle?” [2011 b, Wilson]. It can be derived from the
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equations (21) and (22) and the formula that expresses the three-planet res-
onance Mars - Ceres - Jupiter if the mean motions of Mars and Ceres are
excluded. It also can be derived from the equation for the four-planet reso-
nance Venus - Earth - Mars - Jupiter:

5nV − 5nE − 7nMa + 7nJ ≈ 0 (28)

and the equation for the three-planet resonance Venus - Earth - Mars (21) if
the mean motion of Mars is excluded. Therefore as the three-planet resonance
Venus - Earth - Jupiter (3:2) is less accurate and it is not in an agreement
with other resonances it must be considered as a coincidence.

The last resonance in Table 5 is most inaccurate and it can’t be derived as
mathematical consequence from other. Because of that it must be considered
as a coincidence too.

Therefore the resonances that have shortest times of mismatch Mercury
- Venus - Mars, Venus - Earth - Jupiter (3:2) and Mercury - Venus - Jupiter
(Table 5) must be excluded and must be considered as a coincidence. For
the rest it can be said that each body has a three-planet resonance with
its neighbors. The three-planet resonances, including Jupiter or Mercury, are
inaccurate. The Mercury - Mars - Ceres synodic period is approximately equal
to the synodic period of Earth - Mars - Ceres. The ratio of the synodic period
of Mercury - Venus - Earth and that of Earth - Mars - Ceres is approximately
equal to 1:4. And the ratio of the synodic period of Mars - Ceres - Jupiter
and that of Earth - Mars - Ceres is approximately equal to 7:2 and the first
one is approximately equal to a half of the Venus - Earth - Jupiter synodic
period P41,28. All that shows that there is a linear relationship between the
mean motions of all terrestrial planets, the dwarf planet Ceres and the biggest
planet in the Solar system - Jupiter. Our initial calculations on four-planet
resonances show that they have period of repetition approximately equal to
the last period 44.8 yr.

3 Three-planet resonances, including an asteroid from the
main belt

All asteroids considered in this work are involved in three-planet resonances.
The most accurate of them (Table 6) is Vesta - Juno - Ceres with synodic
period 86.16 yr and time of mismatch 90631 yr.

Initially we took the values of the orbital periods of the asteroids from
ASTORB Database [Asteroid Observing Services] and we calculated a de-
viation per year ψ = 1′ and time of mismatch 15912 yr for the resonance
Astraea - Juno - Pallas. At present the relation between the mean longitudes
of Astraea, Juno and Pallas is:

λAs − 2λJu + λPa ≈ 60◦. (29)

This relation is shown graphically in Fig. 6. For a time equal to 1/6 of
the Astraea - Juno - Pallas synodic period Astraea will rotate by an angle of
60◦ relative to Juno and Pallas by −60◦. Since the orbital period of Juno is
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Table 6. Three-planet resonances, including an asteroid from the main belt

Resonance i:j Pij [yr] ϕ [◦] ψ [′] Pm [yr] ∆P1 [dy] ∆P1/P1 10−3

Mars, Vesta, Jupiter 3:4 15.65 3 12 909 1.66 2

Vesta, Juno, Ceres 1:4 86.16 0 0 90631 0.13 0

Astraea, Juno, Pallas 1:1 78.38 10 8 1399 4.46 3

Astraea, Juno, Pallas * 1:1 78.08 1 1 15912 -0.39 0

Astraea, Juno, Ceres 8:9 687.82 8 1 16389 0.40 0

Vesta, Astraea, Juno 2:5 150.77 8 3 3329 2.53 2

Mars, Flora, Hecuba 3:5 22.20 1 4 2859 0.60 1

Flora, Hecuba, Hilda 1:3 22.23 1 1 7857 0.99 1

Hungaria, Alinda, Hecuba 3:4 35.43 6 10 1098 -2.85 -3

Fig. 6. Configuration of Astraea, Juno and Pallas on 26.07.2012 and 19.08.2025

approximately equal to 1/18 of Astraea - Juno - Pallas synodic period it will
stay in the same place.

In comparison with (29) the analogous relation of the Galilean satellites
Io, Europa and Ganymede is (24).

It is notable that the synodic periods of the three-planet resonances Mars
- Flora - Hecuba and Flora - Hecuba - Hilda (Table 6) are approximately
equal. The latter suggests that there is a correlation between the mean mo-
tions of the four bodies and it is very accurate. If the values for the orbital
periods of the asteroids are taken from ASTORB Database [Asteroid Ob-
serving Services] the relation is:

nMa − nFl − 5nHe + 5nHi ≈ 1′′/yr. (30)
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It is interesting that this dependence includes Jupiter’s resonant asteroids
and Mars. It also shows that after a period 21.16 yr, two by two Mars -
Hecuba and Flora - Hilda conserve their configurations and moreover - the
deviation is only 1 degree per 17 000 years and the time of mismatch
is 3 Myr. Compared to it, the deviation of the Galilean satellites Io - Europa
- Ganymede in Laplace resonance is 1 degree per 80 000 years and time
of mismatch is 15 Myr. But the orbital periods of Galilean satellites Io
and Ganymede are well known. They are approximately 400 times smaller
than these of Mars and Hilda respectively. And Ganymede has revolved 20
500 times since its discovery, but Hilda - only 17 times.

4 Three-planet resonances, including a resonant asteroid
from the main belt and a giant planet

Very accurate results for three-planet resonances, including a resonant aster-
oid from the main belt and a giant planet (Table 7) were expected.

Table 7. Three-planet resonances, including a resonant asteroid from the main belt and a
giant planet

Resonance i:j Pij [yr] ϕ [◦] ψ [′] Pm [yr] ∆P1 [dy] ∆P1/P1 10−3

Hilda, Jupiter, Saturn 6:5 119.07 2 1 13993 1.50 1

Thule, Jupiter, Saturn 7:4 138.75 5 2 5192 4.32 1

Hilda, Thule, Saturn 6:1 75.77 3 2 5254 -2.54 -1

Hilda, Thule, Jupiter 2:1 71.38 23 20 551 -30.80 -11

Hecuba, Thule, Jupiter 1:2 34.51 1 1 9267 2.02 1

Flora, Griqua, Jupiter 2:3 22.53 2 5 2000 -2.43 -2

3 times and 5 times more accurate resonances were obtained than the
two-planet resonance for the asteroids Hilda and Thule respectively. If the
orbital periods of the asteroids are taken from ASTORB Database [Asteroid
Observing Services] then these three-planet resonances are 62 times and 40
times more accurate respectively. If the orbital period of Hilda is calculated
from the two-planet resonance relation:

PHi =
2

3
PJ , (31)

the result is 2888.39 dy. The value of the same period, derived from the
formula for the three-planet resonance, including the orbital period of Saturn:

6

PHi

−
11

PJ

+
5

PS

= 0 (32)
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is 2892.71 dy. The orbital period of Hilda asteroid is 2892.78 dy. As for
Thule asteroid corresponding values are: for the two-planet orbital resonance
- 3249.44 dy, for the three-planet resonance - 3230.09 dy, the orbital period
- 3230.56 dy and the formula for the three-planet resonance is:

7

PTh

−
11

PJ

+
4

PS

= 0. (33)

It is interesting that the middle coefficient in the formulae for the three-
planet resonance of Hilda (26) and Thule (27) is the same -11. The first
coefficients in both formulae are bigger than the last coefficients. If this for-
mula is written with equal first and last coefficient:

1

P
−

2

PJ

+
1

PS

= 0, (34)

it is derived an orbital periods of 7.43 yr. It is corresponding to a semimajor
axis of 3.8 AU according to the third Kepler’s law and it fits the end of
Kirkwood gaps in the main asteroid belt.

If the orbital period of Saturn is excluded from the equations (33) and
(34) it is derived an equation that expresses a three-planet resonance between
Hilda, Thule and Jupiter:

24

PHi

−
35

PTh

+
11

PJ

≈ 0. (35)

This resonance has a synodic period 832.77 yr, what is 7 times bigger
than the synodic periods of the resonance Hilda - Jupiter - Saturn, 6 times
bigger than the synodic periods of the resonance Thule - Jupiter - Saturn
and 11 times bigger than the synodic periods of the resonance Hilda - Thule
- Saturn with very big accuracy. It has time of mismatch 4700 yr. Therefore
the resonance Hilda - Thule - Jupiter (Table 7) is not in an agreement with
other resonances and it must be excluded and considered as a coincidence.

The synodic period of the resonance Thule - Jupiter - Saturn is 4 times
bigger than that of Hecuba - Thule - Jupiter. Therefore can be derived more
relations between these four bodies. If the mean motion of Thule is expressed
from (33) and put in the equation that expresses resonance Hecuba - Thule
- Jupiter:

nHe − 3nTh + 2nJ ≈ 0, (36)

it is derived an equation that expresses a three-planet resonance Hecuba -
Jupiter - Saturn:

7nHe − 19nJ + 12nS ≈ 0. (37)

This resonance has a synodic period 138.39 yr what is approximately equal
of that of Thule - Jupiter - Saturn.



Three-planet resonances 15

If the mean motion of Jupiter is expressed from (33) and put in (36) it is
derived an equation that expresses a three-planet resonance Hecuba - Thule
- Saturn:

11nHe − 19nTh + 8nS ≈ 0 (38)

with the same synodic period 138.39 yr. Therefore the four bodies are in-
volved in a four-planet resonance.

5 Three-planet resonances, including a giant planet

Table 8 shows the synodic periods of Mercury, the giant planets and the
dwarf planet Pluto.

Table 8. Synodic periods of Mercury, the giant planets and the dwarf planet Pluto in days

Planet Jupiter Saturn Uranus Neptune Pluto

Mercury 89.7924087 88.69443681 88.22214703 88.0980302 88.05474148

Jupiter 7253.452612 5044.814643 4668.693751 4550.150484

Uranus 16567.82345 13101.47317 12208.88356

Saturn 62620.01154 46404.54616

Neptune 179202.579

Most interesting of the three-planet resonances, including a giant planet
(Table 9) is the resonance Mercury - Jupiter - Neptune (39). It includes the
largest, closest to the Sun and the most distant planet.

1

PM

−
53

PJ

+
52

PN

≈ 0. (39)

The synodic period of this resonance is 12.8 yr. It is two times bigger than
the synodic period of the three-planet resonances Venus - Earth - Mars and
Earth - Mars - Ceres?! At present the relation between the mean longitudes2

of Mercury, Jupiter and Neptune is:

λM − 53λJ + 52λN ≈ 240◦. (40)

It is shown graphically in Fig. 7. When Jupiter and Neptune are in a
syzygy Mercury is at 120◦ relative to Jupiter.

2 The mean longitudes of the planets are taken from ”Keplerian Elements for Approximate
Positions of the Major Planets” (http://ssd.jpl.nasa.gov/txt/p elem t1.txt)
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Table 9. Three-planet resonances, including a giant planet

Resonance i:j Pij [yr] ϕ [◦] ψ [′] Pm [yr] ∆P1 [dy] ∆P1/P1 10−3

Mercury, Jupiter, Neptune 1:52 12.78 0 0 59463 -0.01 0

Mercury, Jupiter, Saturn 1:81 19.91 1 3 3705 -0.23 -3

Mercury, Saturn, Neptune 1:148 35.94 1 1 9367 -0.17 -2

Jupiter, Saturn, Neptune 5:9 178.95 4 1 8048 8.96 2

Jupiter, Saturn, Uranus 4:9 179.56 15 5 2160 39.02 9

Jupiter, Uranus, Pluto 5:46 635.34 0 0 421857 -0.62 0

Saturn, Uranus, Pluto 5:14 635.10 0 0 273171 2.20 0

Jupiter, Saturn, Pluto 3:5 99.66 7 4 2699 25.54 6

Fig. 7. Configuration of Mercury, Jupiter and Neptune on 09.08.2009 and 30.12.201
(The distances to the Sun are not scaled.)

This resonance is unusual. It could be caused of an existence of a reso-
nance between all terrestrial planets and the giant planets Jupiter and Nep-
tune. This will be examined in a further work.

The next resonance Mercury - Jupiter - Saturn is inaccurate. Its synodic
period is approximately equal to 14/9 of the last period. By more detailed
study can be computed more accurate resonance 9:727 with synodic period
178.72 yr and mismatch time 329358 yr.

The next resonance Mercury - Saturn - Neptune has approximately the
same synodic period 179.45 yr. All of this is in accordance with the next
resonance Jupiter - Saturn - Neptune with a synodic period 178.95 yr. And
even more, the next resonance Jupiter - Saturn - Uranus has almost the same
synodic period 179.56 yr. If the mean motion of Jupiter is excluded from
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the equations that expressed these resonances it is derived a three-planet
resonance Saturn - Uranus - Neptune (1:4) with almost the same synodic
period 179.35 yr. Therefore four giants planet are involved in a four-planet
resonance with a period of repetition approximately equal to 179 yr.

The next two resonances have almost equal synodic periods of 635 yr. If
the mean motion of Uranus is excluded from the equations that expressed
these resonances it is derived an accurate three-planet resonance Jupiter -
Saturn - Pluto (19:32) with the same synodic period and mismatch time
43633 yr. Therefore the last resonance in Table 9 must be excluded and
considered as a coincidence. By more detailed study can be derived some
linear relations between the mean motions of Jupiter, Saturn, Uranus and
Pluto. Most accurate of them is:

nJ − 4nS + 5nU − 2nPl ≈ 1′/yr. (41)

It can be written as:

PSUPl = 2PJSU , (42)

where:

1/PJSU = 1/PJS − 1/PSU (43)

and

1/PSUPl = 1/PSU − 1/PUPl. (44)

The last two periods can be named second synodic periods. Therefore
the second synodic period of Saturn, Uranus and Pluto is twice the second
synodic period of Jupiter, Saturn and Uranus. There is a similar statement
for Venus, Earth, Mars and Ceres. The second synodic period of Venus, Earth
and Mars is equal to the second synodic period of Earth, Mars and Ceres.
Such type of resonances and the physical and geometrical properties of the
second synodic periods will be a subject of further study.

Our initial calculations on four-planet resonances show a four-planet res-
onance Mercury - Jupiter - Saturn - Neptune:

3

PM

−
247

PJ

+
247

PS

−
3

PN

= 2′/yr. (45)

It has a synodic period 59.58 yr and time of mismatch 2.5 Myr. Most
probably this resonance can also be derived as mathematical consequence
from the equations that express resonances between all terrestrial planets and
the giant planets. The period of repetition of giant planets is approximately
three times bigger then this period. The ratio of the last period and the
synodic period of the three-planet resonances Venus - Earth - Mars - Ceres
and Earth - Mars - Ceres (Table 5) is approximately equal to 28:3 and the
ratio of it and the synodic period of the three-planet resonance Venus - Earth
- Jupiter P41,28 (Table 5) is approximately equal to 4:3. Let to remind that the
last period is approximately equal to the period of repetition of all terrestrial
planets, dwarf planet Ceres and Jupiter. Therefore all planets and Ceres
may have a period of repetition approximately equal to 179 yr. This will be
investigated in a further work.
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Conclusion

In this work it was shown that there are many three-planet resonances in the
Solar system. In general they are more in number and more accurate than
the two-planet orbital resonances. The majority of the most accurate among
them Venus - Earth - Mars (21), Earth - Mars - Ceres (22), Hilda - Jupiter -
Saturn (32) and Mercury - Jupiter - Neptune (39) are expressed by adjacent
integers, as well as the most accurate two-planet mean motion resonances
Hilda - Jupiter (3:2), Thule - Jupiter (4:3) and Neptune - Pluto (3:2).

It was found that there are relations between the mean motions and the
mean longitudes of four bodies. These four-planet resonances will be a subject
of further work.

A detailed study of three-planet and four-planet resonances can be ex-
plored in order to explain more precisely the structure, origin and evolution
of the Solar system. Further particular solutions of the four-body problem
using the perturbation theory approach could explain the nature of such res-
onances. Our initial calculations show that there is a relation between the
mean motions of all terrestrial planets, dwarf planet Ceres and Jupiter and
there is a relation between the mean motions of all giant planets and dwarf
planet Pluto.
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