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Abstract. We present a modified Fisher’s criterion for characterization of low amplitude
stellar variability and, in principle, time series. It is based on the ratio So/Sas, where So
is the standard deviation of the data in respect to their average and Sis 1s the standard
deviation of the data in respect to the M-degree polynomial fit. The last one is that, which
produces the smallest standard deviation. (The polynomial with degree M + 1 produces
larger standard deviation because the data changes are not normally distributed and un-
correlated, the number of data is not large and the calculation errors accumulate). In our
cases M lies between 6 and 19. We apply the criterion on 10 light curves of close binary
stars with mass transfer and find that in respect to the photometry error one of them
shows negligible variability. We give also a graphical presentation of the criterion for fast
establishment of suspected variability, or for fast planning of future monitoring.
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Introduction

Usually the stellar variability on time scales from minutes to hours is as-
certained by light curves (LCs), obtained by monitoring. The single expo-
sure times and the reading times between two exposures last from seconds
to decades of seconds. In fact, the LC is a time series which contains form
decades to hundreds data which approximately equal time separation. Some-
times small lapses in the time series exist.

The stellar flickering is a special kind of irregular variability, characterized
by fast changes of the brightness, with amplitude up to a few tenths of magni-
tude (some tens of percent of the luminosity). The flickering gives information
about the mass transfer in close binary stars - symbiotic and cataclysmic vari-
ables (cf. Di Clemente A., et al., 1996, Sokoloski et al. 2001). Applications of
the fractal analysis on LCs of flickering is presented by Bachev et al. (2011)
and Georgiev et al (2012). However, when the variability is faint in respect
to the standard error of the measurement, the reality of the variability is not
certain.

In this paper we present a method for characterization of the low ampli-
tude stellar variability, based on the Fisher’s criterion. We show the applica-
tion of this method on ten stellar LCs, taken by monitoring of light flickering
of close binary stars. We give also a graph for fast establishment of suspected
variability, or for fast planning of future monitoring.

1 The problem and the observational material

The problem which provoked this investigation is illustrated in Fig.1. The
LCs of 2 stars with obvious flickering, extracted from the data base of Za-
manov (2012), are shown in the left panel of Fig.1. The LCs of 3 stars with
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preliminary suspected variability, investigated later by Stoyanov (2012), are
shown in the right panel of Fig.1. The large scale trends of the LCs, fitted
by 1st and 9th degree polynomials, are shown everywhere. In Fig.1 each 9th
degree polynomial elucidates some system of large scale details in the LC.
In the right LCs these details seem to be 2-3 times lower than in the left
LCs, but the right magnitude scale is 5 times shorter. Therefore, the large
scale details in the right, with amplitudes about 0.01 mag, are at least 10
times lower than the details in the left. The reasons of the large scale faint
details in the right LCs may be (i) faint stellar variability, (ii) variations of
the atmosphere transparency or (iii) both.
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Fig. 1. Stellar LCs (jagged curves) and their fits by 1st degree polynomials (straight lines)
and 9th degree polynomials (smooth curves). Left panel: Two LCs with undoubted flickering
(Zamanov 2011). Right panel: Three LCs with preliminary suspected flickering (Stoyanov,
2012). Note that the magnitude axis in the right graph has five times smaller scale in
respect to this on the left. The stars are presented in Table 1.

All LCs in Fig.1 show well pronounced error noise. The photometric error
here is suspected to be about 0.02 mag in the left panel and about 0.005 mag
in the right panel (2 % and 0.5 %, respectively). Consequently, the important
problem is whether the observed variability in the right LCs may be consid-
ered as real. The result of Stoyanov (2012), based on the Fishher’s criterion,
is that faint, but significant flickering is present in the top and bottom LCs
and negligible flickering is observed in the middle one.

Further we present a general solution of this problem and apply it on ten
LCs and two numerical generations of noise. The stars are observed by the
telescopes of the Rozhen NAO and the LCs are extracted from the data base
of Zamanov (2012). The data about the stars and their LCs are presented
in Table 1. Figure 2 shows the distributions of the main observing param-
eters: data number N (20-120), total monitoring time Tpror (20-120 min),
single exposure times Trxp (10-300 s) and standard deviations of the data
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in respect to their averge values Sy (0.004-0.12 mag). It is seen that the used
LCs inhere very different observing parameters, without mutual correlations
between them (Fig.2).
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Fig. 2. Left panel: Distribution of the observing parameters of the stars

2 The method and the results

We adapt the statistical criterion of Fisher. It is strictly correct when the
data changes in the time series are normally distributed and uncorrelated.
We suppose that these requirements are implemented enough well.

Each observed time series may be characterized simply by average value
and standard deviation S (in respect to the average value). In rare cases,
when the standard error of the measurements (which are supposed normally
distributed and uncorrelated) has accurately known value o. Then the sig-
nificance of the changes in the time series may be established by the ratio
S/o (with S > o). The context of this method is comparing between the
observed time series with standard deviation S and a time series of normal
noise with standard error o. The ratio S/o is a random value with Pearson’s
distribution (chi-square distribution). When the ratio S/o is larger than the
theoretic value, the variability is considered as significant.

However, in practice ¢ is not well known and only an estimation s of o
is available. Then the significance of the changes in the time series may be
established by the ratio S/s (with S > s). This ratio is a random value with
Fisher’s distribution and when it is larger than the respective theoretic value,
the variability is consider as significant. (Cramer 1946, Tucker 1962, Neter
et al. 1992). The theoretic values of the distributions of Pearson and Fisher
depend on the number of data and on degree of freedom. They may be found
everywhere in the literature.

We consider that the standard error ¢ is unknown and use its estimation
Sir- That is why we fit the LC consequently by polynomials with degrees 0,
1, 2, ..., M and calculate the respective standard deviations Sp, S1, So, ...,
Sar. We stop the process when the condition Sasy1 > Sjs is reached and use
the value of Sjs as estimation of . We note, that the polynomial with degree
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M + 1 produces larger standard deviation because the data changes are not
normally distributed and uncorrelated, the number of data is not large and
the calculation errors accumulate. In our cases M lies between 6 and 19. In
the end we detect variability by the modified Fisher’s criterion So/Syr > Fy.
Here Fly is the theoretical value of the Fisher’s distribution for N data, with
account of the degree of freedom. We apply this criterion for significances of
95 % and 99 %.

The results for ten LCs, described in Table 1, are shown in Fig.3. Nine
LCs take places above the curves, corresponding to the criterion 95 % and
99 % significance. Seven of them have well pronounced variability, one LCs
shows low, but statistically significant variability (star B1) and one LC does
not show statistically significant variability (star B2). Thus, under the given
observing conditions, the last star can not be considered as variable, that
confirms the conclusion of Stoyanov (2012).
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Fig. 3. Distributions of the stars on the diagram of the Fisher’s criterion. Simulated "light
curves" with 77 points as normal noise and equivalent noise are shown by the circle in the
bottom coordinate of the diagram, noted by GN and EN (see also Table 1)

For comparison, simulated "light curves" with 77 points, produced by gen-
erators of normal noise and equivalent noise, are processed by the described
method. As it is expected, they do not show variability above the noise and
are situated on the bottom coordinate axis of Fig.3.
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3 Detection diagram of the Fisher’s method with use of
relative data

The graph in Fig.4 presents the Fisher’s criterion in relative units, here in
percentages. It may be directly used in astronomy, where the stellar magni-
tudes are relative values and hundredths parts of the magnitude corresponds
approximately to the percentages of the luminosity.
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Fig. 4. Diagram of the Fisher’s criterion for detection of faint variability in time series

Five pairs of curves, each for 95 % and 99 % significance, corresponding
to five values of the relative standard error @, expressed in percentages, are
shown in Fig.4. For example, let us imagine a monitoring of stellar variability,
carried out with photometry standard error @ (f.e. 0.01 mag or 1 %), number
of observations N (f.e. 20), and standard deviation in respect to the average
value SD (f.e. 0.011 mag or 1.1 %). According to the diagram in Fig.4, the
numerical values, given here, correspond to an object whose variability has
more than 99 % significance.
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Generally, the diagram, shown in Fig.4, solves two practical problems. The
straight problem is the determination of the detectable variability SD (%)
under known Q (%) and given N. The reverse problem is the determination
of the necessary N under known Q (%) and desired SD (%).
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Table 1. Basic data about the observations:
1 - Number; 2 - Star; 3 - Date; 4 - Telescope (Schm -
Schmidt in Rozhen, Cass — Cassegrain in Rozhen, 2mRC - 2m
in Rozhen; 5 — Photometry band; 6- Number of exposues;
7 - Single exposure time, in seconds; 8 - Total observing
time, in minutes; 8 - Source (S - Stoyanov, Z - Zamanov)

# Star Date Telescope Band Ng Tgxp Tror Source
1 2 3 4 5 6 7

1B ZZ CMi 2011 Jan 25 Cass 113 60 115
2B NQ Gem 2011 Jan 25 Cass 119 30 105
3B BF Cyg 2011 Mar 27 Cass 109 60 111
4I V425 Cas 2006 Aug 25 2mRC 108 10 32
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5I RS Oph 2009 July 21 Schm 74 60 105
6B RS Oph 2009 July 06 Schm 50 60 105
7B RS Oph 2009 July 21 Schm 70 40 80
8B RS Oph 2009 July 07 Schm 46 30 30
9U RS Oph 2008 July 06 2mRC 20 300 115
OU RS Oph 2009 July 07 Schm 41 120 110




