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Abstract. A software package Unresolved Galaxy Classifier (UGC) is being developed for
the ground-based pipeline of ESA’s Gaia mission. It aims to provide an automated taxo-
nomic classification and specific parameters estimation analyzing Gaia BP/RP instrument
low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised
learning technique, the Support Vector Machines (SVM). The software is implemented in
Java as two separate modules. An offline learning module provides functions for SVM-
models training. Once trained, the set of models can be repeatedly applied to unknown
galaxy spectra by the pipeline’s application module. A library of galaxy models synthetic
spectra, simulated for the BP /RP instrument, is used to train and test the modules. Science
tests show a very good classification performance of UGC and relatively good regression
performance, except for some of the parameters. Possible approaches to improve the per-
formance are discussed.
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Introduction

Gaia is a cornerstone mission of ESA, scheduled for launch in 2013. It is a
scanning satellite that will repeatedly survey in a systematic way the whole
sky during its six-year mission. The scientific payload will provide astromet-
ric, photometrical and spectroscopic information of all point sources up to
V=20, about one billion objects. Gaia science include: stellar structure and
populations, Galactic structure and evolution, extrasolar planets, solar sys-
tem, galaxies and quasars, general relativity. Its double telescope feeds three
instruments: the astrometry and G-band photometry field AF, the BP/RP
spectrophotometer, and the high-resolution radial-velocity spectrograph RVS.
The images from these three fields are collected in particular parts of a mosaic
of 106 CCDs that works in a time-delay integration mode. The on-board pre-
processed output will consist of one-dimensional binned images of the detected
and validated point-like sources profiles and their spectra. It is expected a 50
GB/day data flow, resulting in about 100 TB uncompressed science data dur-
ing the mission. An extensive, sophisticated treatment is necessary to yield
meaningful information from the original unintelligent data.

A large pan-European team of expert scientists and software developers,
the Data Processing and Analysis Consortium (DPAC), submitted a proposal
for a comprehensive ground-based system, capable of handling the full size and
complexity of Gaia data. The proposal (DPAC, 2007) was approved by ESA
and the DPAC became officially responsible for Gaia-mission data processing
and analysis. DPAC includes six large Data Processing Centers (DPC) and is
structured around nine Coordination Units (CU), each in charge of a specific
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aspect of the data processing towards the final science product. The goal of
the CUS8 “Astrophysical Parameters” is to provide for the observed objects
classification information and an estimation of specific astrophysical param-
eters to be included in the missions intermediate and final database. Among
these objects, it is expected few millions of unresolved (point-like) galaxies
to be observed. The main task of the top-level work-package CU8/WP832
“Unresolved Galaxy Classifier” (UGC) is to develop an algorithm for classifi-
cation and parametrisation of the unresolved galaxies and to implement it in
a software system, part of the DPAC’s ground-based pipeline.

The requirements for the UGC functionality are described in the first
section. The data library used for the development is presented in the sec-
ond section. The currently developed algorithm and its implementation in
software modules are shortly presented in the next section. In the fourth sec-
tion, the classification and regression performance of the application module
are discussed. Conclusions derived from the tests and key-points for further
development of UGC are given in the last section.
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Fig. 1. The main task of the Unresolved Galaxy Classifier (left panel) and a model of the
external factors influencing the observed galaxy spectra (right panel).

1. Galaxies spectra classification and regression requirements

The UGC system shall be able to provide for each galaxy, observed during
the Gaia mission, a taxonomy classification and a particular astrophysical
parameters estimation. This should be based on the galaxies spectra observed
with the low-resolution Gaia BP/RP instrument. The requirements to the
UGC task are set by the factors forming the spectra emitted by the galaxies
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and registered by Gaia (Fig.1). An intrinsic galaxy spectrum is modulated
by the source’s redshift and by the total extinction in our Galaxy (TGE)
towards the source. The spectrum amplitude depends on the objects distance,
the observed magnitude, and is deformed by the instrumental response and
noise.

The requirements that UGC must meet are additionally set by the algo-
rithm selected to be implemented. It is not possible to provide an analytical so-
lution to directly restore and parametrise the registered spectra. A promising
solution is to implement an Artificial Intelligence system based on supervised
learning. Such a system is firstly trained with templates, simulated spectra
(inputs) of galaxy models with a priori known parameters (expected outputs).
Then, the system can be applied repeatedly to classify unknown galaxies and
to estimate their parameters from the observed spectra. The problem here is
to provide simulations as close as possible to the really observed spectra. Un-
fortunately, there is no library of observed or modeled galaxy spectra suitable
for such a task, so it is required to create proper spectral libraries for UGC.

Finally, implementation of such a system in a software has to follow the
DPAC requirements for the ground-based pipeline, the Software Engineering
Guidelines (O’Mullane et al., 2011). The UGC is being developed in Java? lan-

guage under the Eclipse? Integrated Development Environment. The DPAC
approach of 6-month cycles, is being followed in the UGC development, start-
ing from a very simple implementation towards the final, complete software
product. The Cyclel0 software release UGCv10, as of June 2011, is presented
here. It is mainly intended for offline science tests of an optimized algorithm
implemented in UGC, as well as for online performance tests of UGC within
the simulation of the DPAC pipeline in one of the DPCs.

2. Library of galaxy models synthetic spectra

Accordingly to the UGC requirements, we created libraries of synthetic spec-
tra (Tsalmantza et al., 2007, Tsalmantza et al., 2009, Karampelas et al., 2011)
using the evolutionary synthesis of galaxy spectra provided by “Pegase2”
model (Fioc & Rocca-Volmerange, 1997). The model produces spectra based
on a number of astrophysical parameters. Most of them, like galaxy age, have
been fixed by adopting four taxonomic galaxy classes galType: gal E (early),
gal_ S (spiral), gal_I (irregular), and gal_B (quenched star-formation galax-
ies).

The galType also fixes the star-formation rate, SFR, law used and the
meaning of the parameters. The exponential law (1) has been used for gal E
type, whereas (2) has been applied for the other three galaxy types with the
SFR quenching limit (3) additionally applicable only to the ga_ B class:

SFR(t) = (Py/Py) x et (1)
SER(t) = (1/Py) * Myqas(t)™ (2)
SFR(t)=0 if (Age—1t) < Ps (3)

% http://java.com
* http://www.eclipse.org
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These SFR parameters, for the corresponding types, and the gas infall time
(excluding the early type), are found to be of primary importance in modeling
the spectra (Tsalmantza et al., 2007) and are grouped in UGC under the
galPar name (see Tab.1).

Table 1. Intrinsic galaxy model parameters galPar for each galType class.

galType
gal E | gal S|gal I| gal B
S_anfall|I_infall| B_infall
E_sfrP1|S_sfrP1|I_sfrP1|B_sfrP1

galPar E_sfrP2|S_sfrP2|I_sfrP2|B_ sfrP2
B_sfrP3
SFR law| (1) (2) @) |(Zand3)

Fixing the classes and varying the corresponding parameters within proper
ranges, we created a large set of synthetic galaxy spectra that showed good
coverage of the two-color diagrams of observed galaxies (Tsalmantza et al.,
2009). This base set of synthetic spectra has been extended reproducing it
for different redshift values z within 0.0 - 0.2 range and for random values
of the coefficient Ao (range 0.0 - 6.0, equally distributed in log-scale) of the
total galaxy extinction (TGE) towards the source. The latter is based on the
extinction law (Cardelli et al., 1989) where Ao is the first coefficient (close to
Ay for early stars) and the second is fixed to Ro=3.1.

The extended set of synthetic spectra has then been used to produce the
Gaia BP/RP simulated spectra library. The simulations are provided by CU2
group with their Gaia Object Generator package, GOG (Isasi et al., 2010). A
representative set of synthetic spectra and their BP and RP simulations, in
the very first library, are illustrated in Fig.2.

In the UGCv10 release, the GOGT library of galaxy spectra has been used.
It is simulated for three Gaia magnitudes (Gynqq=15.0, 18.5 and 20.0). Instru-
mental and calibration noise is properly appheg and the spectra are averaged
for a multi-epoch observations simulation with the number of transits varying
from 40 up to 80.

3. UGC algorithm and implementation

The UGC system shall provide for each galaxy spectrum observed during
the Gaia mission a taxonomy classification galType class-probability and the
astrophysical APs gal parameters prediction. The latter include the galaxy
model’s star formation parameters, galPars (Tab.l), and the two external
parameters influencing the intrinsic galaxy spectrum, the redshift z and the
TGE coefficient Ao.

A supervised learning algorithm, Support Vector Machines (SVM), is
used. It is applicable to both, the classification (Cortes & Vapnik, 1995) and
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Fig. 2. Top: Pegase.2 synthetic spectra of representative galaxy types (emission lines, if
any, not included); Bottom: The synthetic spectra (emission lines included) simulated for
Gaia BP and RP instrument without applying redshift, extinction and instrumental noise.
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the parameter regression problems (Drucker et al., 1997). A “labeled” data set
is necessary for the learning procedure. In a parameter regression, the train-
ing set contains the input data (simulated galaxy spectra) and the desired
outputs, the priori known parameter values used to create these spectra. The
SVM maps the input/output vectors to a higher dimensional space applying a
nonlinear kernel function and creates a maximal separating hyperplane, SVM-
model for this parameter. The SVM-model can then be applied to predict this
parameter values when parsing unknown spectra. On the other hand, in the
multiclass classification problem, the training output is a numerically coded
taxonomic class. In this case, the trained SVM-model applied to an unknown
spectrum estimates the probabilities the source to belong to the specific class.
The classification mode of SVM is used to create the SVM-model for the gal-
Type parameter to classify the galaxy spectra whereas a model per parameter
shall be constructed in regression mode for each of the APs gal parameters

value prediction.
SVM II
models set
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data set
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Fig. 3. The learning, application and checking functions of the Unresolved Galaxy Classifier
(the dark-shaded elements are parts of the Gaia ground-based data processing pipeline).

The SVM algorithm implemented in LIBSVM library (Chang & Lin, 2007)
is used in UGC. The current implementation, UGCv10 (Fig.3), consists of two
modules, UGC Learn and UGC Apply, that provide the learning and the
application function, correspondingly. One more module, not described here,
will be provided for furthermore automated checking the UGC performance
in order to analyse and, if necessary, to update the algorithm during the
mission data processing cycles. The learning is used to prepare offline and
to provide the “trained” SVM-models. On the other hand, the application
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function is being implemented as part of the DPAC ground-based pipeline for
Gaia science data processing.

3.1. Learning module

Three tasks are provided by UGC'  Learn module to prepare the SVM-models,
one model at a time. Specific parameters of the SVM are necessary to be tuned
to ensure the model’s optimal performance. Then, the SVM-model is created
in the training process and is saved. Both, the tuning and the training, use
one and the same labeled data set (galaxy spectra with priori known class
and parameters). The trained SVM is finally tested with another labeled
data set for performance estimation. The sequence of these three tasks is
applied offline to prepare SVMs for the classification and for each of the
galaxy parameters resulting in a set of fifteen SVM-models. Moreover, such
sets are obtained for particular source magnitudes and for different ranges of
the external parameters influencing the galaxy spectra (see below).

In order to improve the UGC performance, following test results from
a previous implementation (Bellas-Velidis et al., 2010), it has been decided
to “split” the total range of the two external parameters that influence the
intrinsic spectra of galaxy models. In addition to previously fixed three ranges
in sources magnitude Gjqq, four sub-ranges for the redshift z and five sub-
ranges for the extinction coefficient Ao (see Tab.2) have been specified.

Table 2. Application ranges defined for SVM-models and their coding. The “total ranges”
are defined only for the redshift z and for the extinction coefficient Ao initial estimation.

Gmag | z | Ao
G150 13.0-16.0{Z0020 0.00-0.20{A0060 0.0-6.0
G185 16.0-19.0|Z0005 0.00-0.05|A0005 0.0-0.5
G200 19.0-20.0|1Z0410 0.04-0.10|A0010 0.0-1.0

70915 0.09-0.15|A0520 0.5-2.0
71420 0.14-0.20|A1535 1.5-3.5
A8060 3.0-6.0

The total combination of the defined ranges required to tune, train and
test 1350 SVM-models. The first tests showed that galaxy parameters regres-
sion is not effective for the faintest magnitudes. So well, it has been found
that the smallest extinction range SVMs does not provide better accuracy
than the next one. Finally, there is a redundant: the combination of the total
range for z with the sub-ranges for Ao and vice versa. Following this, the
total number of SVM-models, that are really usable and necessary for the
UGC application, has been reduced to 534.

3.2. Application module

The UGC _Apply module is intended to run online as part of the earth-based
Gaia data processing pipeline. The application module will be activated every
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time when a galaxy spectrum is identified. This identification is provided by
another software package of the pipeline, the Discrete Source Classifier, DSC
(Smith et al., 2011). The UGC_ Apply runs a sequence of two tasks: selection
and processing. Firstly, it will select the spectrum if it is validated for its
suitability as galaxy or galaxy-like, based on predefined criteria. Only when
validated, the spectrum will be processed by the second task.

The UGC Apply processing function is illustrated in Fig.4. A specific
pre-processing is applied to the spectrum, converting it to a proper form
as required by the trained SVMs. Then, based on the source’s magnitude
Gimag, it 1s fixed the proper set of SVM-models to be used. Follows an initial
estimation of the two external parameters z and Ao. The corresponding two
SVMs trained for the total range of these parameters are applied to the source
to provide their first estimate.

cus =
/ BP/RP, G, / SVM models

set

preprocess

N W | [
Al

zd)

»| galType |

>| APs_gal =

Fig.4. The processing task of the Unresolved Galaxy Classifier application module
UGC _Apply. This task is applied only if the source has been already validated as galaxy
or galaxy-like by the front-end selection task of the application module.

These initial values are now used to fix the applicable subset of specific-
range SVM-models. Such a subset has been trained to provide classification
and parameters regression for spectra influenced by the redshift and the ex-
tinction varying within a specific part of their total range (Tab.2). The cor-
responding SVMs from the subset are then used to perform galType classi-
fication and all the APs_gal astrophysical parameters regression (including
a final estimation of the two external parameters). Because of sub-ranges
partially overlapping, there can be applicable one, two, or four subsets of
SVM-models. In the latter two cases, a proper weighting of the estimates is
provided. Finally, the results are output for saving in the Gaia Main Database.
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4. UGCv10 performance

UGC performance for galaxy classification and for the two external parame-
ters regression is tested with one and the same basic set of synthetic spectra
simulated for three magnitudes (Gp,qq=15.0, 18.5, and 20.0) of the sources;
the performance for the galaxy internal parameters has been tested for the
first two magnitudes only. This basic set is created for four predefined galaxy
types, varying ounly specific galaxy model parameters, and applying random
redshift z and extinction Ao within predefined ranges (see Section 2).

The UGC application module has been tested on 70233 galaxy spectra.
On a computing node of about 0.5GFlops/s the pure CPU time was 4600s,
leading to about 0.066s or 34MFlops per source. About 1.5GBytes Java heap
space is required for UGC application module to run.

4.1. Galaxy type classification performance

UGC provides for each source a class-probability vector with four elements,
the normalized probabilities (sum to be unit) for the source to belong to each
of the predefined galaxy types. The element corresponding to the source’s
real class contains the so-called True-Positive (TP) probability. If one of the
four probabilities is above 0.5 the galaxy is considered positively classified. If
all the probabilities are below 0.5 the source class is undefined. In the case
of positive classification, if the probability corresponds to the real (a priori
known) class of the galaxy, it is considered True-Positive classification, or
TPC, else it is counted as False-Positive classification (FPC).

True-Positive class probability histograms for G=15.0 True-Positive class probability histograms for G=18.5
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Fig. 5. The UGC performance for galType classification in the G,0g=15.0 and 18.5 sources
tests. For each class, the percentage of the cases with True-Positive probability above 0.5
(dark-shaded bars) gives the TP classification performance for the class.

The distribution of the TP class-probability estimates in the two mag-
nitude tests (Gpag=15.0 and 18.5), for each of the four subsets of spectra
corresponding to a predefined galaxy class, is presented in Fig.5. The cases of
TPCs (TP probabilities > 0.5) are shown dark-shaded. In the faintest mag-
nitude test (Gyuag=20.0), not presented here, almost all the counts for the
different probability ranges are below 20%.
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Table 3. UGC classification performance given by the percentage of True-Positive (bold)
and False-Negative classifications for the three testing sets of spectra with different Gag.

Galaxy model UGCv10 classification performance
Real |Sources Gimag=15.0 Grmag=18.5 Grmag=20.0
galType|number E S I B| E S I B| E S I B

gal E| 1620 (|94.1 4.9 0.0 0.0{78.1 19.1 0.0 0.3|44.8 344 0.0 7.0
gal S| 6851 0.698.7 0.2 0.0 3.990.6 0.1 2.7 5967.4 0.0 159
gal I| 1107 0.0 5.788.9 22 0.0 8450.8 26.5| 0.0 11.6 30.2 42.6
gal__B 8817 0.0 02 0599.1f 0.1 20 2593.7 04 73 1983.4

The classification performance is usually presented by so-called confusion
matrix where the elements show the percentage of objects of a given class that
have been positively classified. The diagonal elements show the percentage
of the objects with True-Positive classifications for the corresponding real
class, whereas the other elements on each row count the FPC’s. The UGC
performance in the three magnitude tests is presented in Tab.3.

As this can be seen from Fig.5 and Tab.3, the UGC classification perfor-
mance is very good for the bright sources (Gp,qg=15.0). The percentage of TP
classifications is very close to 100% for the two best classified types, gal_S
and gal B, it is about 95% for the gal E and a little below 90% for gal I
type. The classification is acceptable for faint sources (Gy,q=18.5), providing
TPC above 90% for gal S and gal B, around 80% for gal E and falling to
around 50% for gal_ 1. Finally, for the faintest sources (Gy,qq=20.0), it is still
acceptable for the best classified S and B-type, but there is a problem for
the other two types. It seems that in this case we can still provide a two-class
classification combining £ with S in an “early” galaxy type, and I with B in
a “late” type. On the other hand, the relatively worse performance for gal I
could be caused by the small number of simulated spectra of this type.

4.2. External parameters regression performance

The two parameters, z and Ao, are estimated by UGC in a two-stage pro-
cess (see Section 3.2). Initially, they are estimated applying the corresponding
magnitude SVM-models that has been trained for the total range of these pa-
rameters. The initial estimate is used for fixing which SVM-models, trained
for specific sub-ranges of these parameters (Tab.2) shall be used for final es-
timation. The UGC performance in these two cases is presented in Tab.4 by
the Root-Mean Square Deviation (RMSD) of the estimated from the real (a
priory known) value in the testing set of spectra. The corresponding normal-
ized value, NRMSD, in percents of the parameter range is also given for the
final estimation. The performance improvement is evident in the final ver-
sus the initial estimation for both parameters and that this improvement is
greater towards the brighter sources. This general performance is even better
illustrated in Fig.6 plotting the finally estimated versus the real values for
these parameters for the three magnitude tests. In each figure there is an
inset showing the histogram of the differences (estimated minus real value).
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Table 4. UGC regression performance for the external parameters initial and final estima-
tion given by the Root-Mean Square Deviation for the three sets of spectra with different
G magnitude. For the final estimation, the range-normalized, NRMSD, is also shown.

Galaxy model UGCv10 regression performance
External |[Parameter Gmag=15.0 Grmag=18.5 Gmag=20.0
APs_gal| Range ||initial final initial final initial final
z 0.0 - 0.2 []0.005 0.002 (1.0%)[0.015 0.011 (5.5%)]0.030 0.026 (13.0%)
Ao | 0.0-6.0 |[0.08 0.04 (0.7%)[0.18 0.15 (2.5%)[0.30 0.29 (4.8%)
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Fig. 6. Redshift “2” (left panel) and extinction “Ao” (right panel) estimation performance
for Gmag=15.0, 18.5 and 20.0 source sets. Each inset shows the corresponding histogram
of the differences between the UGC estimated and the real values.
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The UGC very good performance for extinction coefficient Ao estimation,
for all the magnitudes up to the faintest sources is clearly shown in Fig.6
(right panel). It is also very good for the redshift z (left panel) for the bright
sources and it is relatively good for Gy,.,=18.5, but in the latter case there
is a number of systematically deviated estimations. for the faintest sources
this pattern of deviations isF quite extended, causing the estimation to be
doubtful here. An investigation is necessary to find the reasons leading to the
performance degradation.

4.3. Galaxy model parameters estimation performance

The UGC performance for the galaxy model parameters regression has been
found unacceptable for the faintest magnitudes in earlier tests, so SVM-
models have not been trained for the case. The performance, the RMSD and
the corresponding NRMSD, is presented in the Tab.5 for the other two Gy,qq
tests (15.0 and 18.5). For the parameters of each particular galType model,
only the corresponding spectra subset has been tested. Normalized RMSD
value above 20% indicates rather doubtful performance for the parameter
regression.

Table 5. UGC regression performance for the galPar parameters estimation given by
the Root-Mean Square Deviation and the range-normalized NRMSD for two testing sets of
spectra with different G magnitudes (unacceptable performance is marked by an asterisks).

Galaxy model UGCv10 performance
galType| galPar | Range Units Gimag=15.0 | Gmag=18.5
gal E|E_sfrP1[ T0- 14100 My 696 (4.8%)] 1459 (10.1%)

— |E _sfrP2|0.20-145 Mg 0.06 (4.8%) 0.16 (12.8%)
S sfrP1{0.30 - 2.40 0.56 *(26.7%)| 0.60 *(28.6%)
gal_S|S sfrP2 5 - 30000 My/Mg|| 3521 (11.7%)| 4979 (16.6%)
S infall 5 - 16000 My 1336 (8.4%)| 2714 (17.0%)

I sfrP1|0.60 - 3.90 0.61 (18.5%)| 0.68 (20.6%)
gal_I|I sfrP2 4000 - 70000 My/M ¢ |[14400 (21.8%)|18048 *(27.3%)
I infall |5000 - 30000 My 5759 *(23.0%)| 6143 *(24.6%)
B_sfrP1|0.60 - 3.90 0.56 (17.0%)| 0.74 (22.4%)

gal B B sfrP2|4000 - 70000 My/M ¢ ||11881 (18.0%)|17250 *(26.1%)
-7|B sfrP3| 1-150 My 15.03 (10.1%)| 29.6 (19.9%)

B infall|5000 - 30000 My 5828 *(23.3%)| 6113 *(24.5%)

The regression performance for estimation of the intrinsic parameters of
the four galaxy model types is illustrated in the panels of Fig.7 and Fig.8. Each
panel shows the estimated versus the real value of the particular parameter
in the two magnitude tests. The UGC shows a good performance for the two
parameters of the gal E model in both magnitude tests, with the exception
of E sfrP1 real values very close to zero or near their upper limit.

Relatively good is the UGC performance for the gal S parameters with
exception of the S sfrP1. Even worse, in the latter case it is clear that the
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Fig.7. UGC regression performance for the gal E, gal S and gal I types parameters
galPar for the Gyag=15.0 and 18.5 source sets.
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Fig. 8. UGC regression performance for the gal B type galPar parameters.

UGC is unable to estimate the parameter even for bright sources. Same is
the situation with the infall parameter for the gal I and the gal B mod-
els. For these two models, there is also a problem with the sfrP2 parameter
estimation for faint sources (Gy,qg=18.5). For such sources, there is also un-
satisfactory performance for the B sfrP8 parameter estimation. Each case of
unacceptable performance is marked by an asterisk on Tab.5.

The small number of irregular galaxies spectra (Tab.3) can not be the rea-
son of an unsuccessful training, as for the gal B models this number is quite
large. Possibly, either the spectral changes caused by these parameters are re-
ally undetectable because of the instrumental S/N, the TGE and the redshift
influence, or the parameter values range and sampling shall be optimized.

Conclusion

The SVM-based algorithm implemented in UGCv10 is promising to provide a
very good performance for unresolved galaxies spectra classification with the
future Gaia mission. The tests based on simulated spectra library show also
that UGC can estimate with good accuracy the galactic extinction towards the
observed sources as well as their redshift. Acceptable regression performance
is shown for most of the galaxy model parameters for brighter sources, whereas
there is a problem with some of the parameters, mostly in the fainter range
of magnitudes.
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Further investigation of the specific parameters influence on the simu-
lated spectra is necessary to optimize the spectral library and to improve the
SVM learning. Applying nonlinear pre-processing of particular parameters
seems promising to help towards better performance. Development of similar
algorithm, but based on Artificial Neural Networks (ANN) is worth to be
considered. Unlikely the SVM, an ANN-model can be trained to estimate few
parameters at once.
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