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2 Department of Astrophysis, Astronomy & Mehanis, Faulty of Physis,University of Athens, 15783, Athens, Greeeibellas�astro.noa.gr(Submitted on 26.03.2012; Aepted on 29.04.2012)Abstrat. A software pakage Unresolved Galaxy Classi�er (UGC) is being developed forthe ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxo-nomi lassi�ation and spei� parameters estimation analyzing Gaia BP/RP instrumentlow-dispersion spetra of unresolved galaxies. The UGC algorithm is based on a supervisedlearning tehnique, the Support Vetor Mahines (SVM). The software is implemented inJava as two separate modules. An o�ine learning module provides funtions for SVM-models training. One trained, the set of models an be repeatedly applied to unknowngalaxy spetra by the pipeline's appliation module. A library of galaxy models synthetispetra, simulated for the BP/RP instrument, is used to train and test the modules. Sienetests show a very good lassi�ation performane of UGC and relatively good regressionperformane, exept for some of the parameters. Possible approahes to improve the per-formane are disussed.Key words: Methods: data analysis; Tehniques: misellaneous; Galaxies: generalIntrodutionGaia is a ornerstone mission of ESA, sheduled for launh in 2013. It is asanning satellite that will repeatedly survey in a systemati way the wholesky during its six-year mission. The sienti� payload will provide astromet-ri, photometrial and spetrosopi information of all point soures up toV=20, about one billion objets. Gaia siene inlude: stellar struture andpopulations, Galati struture and evolution, extrasolar planets, solar sys-tem, galaxies and quasars, general relativity. Its double telesope feeds threeinstruments: the astrometry and G-band photometry �eld AF, the BP/RPspetrophotometer, and the high-resolution radial-veloity spetrograph RVS.The images from these three �elds are olleted in partiular parts of a mosaiof 106 CCDs that works in a time-delay integration mode. The on-board pre-proessed output will onsist of one-dimensional binned images of the detetedand validated point-like soures pro�les and their spetra. It is expeted a 50GB/day data �ow, resulting in about 100 TB unompressed siene data dur-ing the mission. An extensive, sophistiated treatment is neessary to yieldmeaningful information from the original unintelligent data.A large pan-European team of expert sientists and software developers,the Data Proessing and Analysis Consortium (DPAC), submitted a proposalfor a omprehensive ground-based system, apable of handling the full size andomplexity of Gaia data. The proposal (DPAC, 2007) was approved by ESAand the DPAC beame o�ially responsible for Gaia-mission data proessingand analysis. DPAC inludes six large Data Proessing Centers (DPC) and isstrutured around nine Coordination Units (CU), eah in harge of a spei�Bulgarian Astronomial Journal 18(2), 2012



4 I. Bellas-Velidis, et al.aspet of the data proessing towards the �nal siene produt. The goal ofthe CU8 �Astrophysial Parameters� is to provide for the observed objetslassi�ation information and an estimation of spei� astrophysial param-eters to be inluded in the missions intermediate and �nal database. Amongthese objets, it is expeted few millions of unresolved (point-like) galaxiesto be observed. The main task of the top-level work-pakage CU8/WP832�Unresolved Galaxy Classi�er� (UGC) is to develop an algorithm for lassi�-ation and parametrisation of the unresolved galaxies and to implement it ina software system, part of the DPAC's ground-based pipeline.The requirements for the UGC funtionality are desribed in the �rstsetion. The data library used for the development is presented in the se-ond setion. The urrently developed algorithm and its implementation insoftware modules are shortly presented in the next setion. In the fourth se-tion, the lassi�ation and regression performane of the appliation moduleare disussed. Conlusions derived from the tests and key-points for furtherdevelopment of UGC are given in the last setion.

Fig. 1. The main task of the Unresolved Galaxy Classi�er (left panel) and a model of theexternal fators in�uening the observed galaxy spetra (right panel).1. Galaxies spetra lassi�ation and regression requirementsThe UGC system shall be able to provide for eah galaxy, observed duringthe Gaia mission, a taxonomy lassi�ation and a partiular astrophysialparameters estimation. This should be based on the galaxies spetra observedwith the low-resolution Gaia BP/RP instrument. The requirements to theUGC task are set by the fators forming the spetra emitted by the galaxies



UGC for ESA/Gaia mission 5and registered by Gaia (Fig.1). An intrinsi galaxy spetrum is modulatedby the soure's redshift and by the total extintion in our Galaxy (TGE)towards the soure. The spetrum amplitude depends on the objets distane,the observed magnitude, and is deformed by the instrumental response andnoise.The requirements that UGC must meet are additionally set by the algo-rithm seleted to be implemented. It is not possible to provide an analytial so-lution to diretly restore and parametrise the registered spetra. A promisingsolution is to implement an Arti�ial Intelligene system based on supervisedlearning. Suh a system is �rstly trained with templates, simulated spetra(inputs) of galaxy models with a priori known parameters (expeted outputs).Then, the system an be applied repeatedly to lassify unknown galaxies andto estimate their parameters from the observed spetra. The problem here isto provide simulations as lose as possible to the really observed spetra. Un-fortunately, there is no library of observed or modeled galaxy spetra suitablefor suh a task, so it is required to reate proper spetral libraries for UGC.Finally, implementation of suh a system in a software has to follow theDPAC requirements for the ground-based pipeline, the Software EngineeringGuidelines (O'Mullane et al., 2011). The UGC is being developed in Java3 lan-guage under the Elipse4 Integrated Development Environment. The DPACapproah of 6-month yles, is being followed in the UGC development, start-ing from a very simple implementation towards the �nal, omplete softwareprodut. The Cyle10 software release UGCv10, as of June 2011, is presentedhere. It is mainly intended for o�ine siene tests of an optimized algorithmimplemented in UGC, as well as for online performane tests of UGC withinthe simulation of the DPAC pipeline in one of the DPCs.2. Library of galaxy models syntheti spetraAordingly to the UGC requirements, we reated libraries of syntheti spe-tra (Tsalmantza et al., 2007, Tsalmantza et al., 2009, Karampelas et al., 2011)using the evolutionary synthesis of galaxy spetra provided by �Pegase2�model (Fio & Roa-Volmerange, 1997). The model produes spetra basedon a number of astrophysial parameters. Most of them, like galaxy age, havebeen �xed by adopting four taxonomi galaxy lasses galType: gal_E (early),gal_S (spiral), gal_I (irregular), and gal_B (quenhed star-formation galax-ies).The galType also �xes the star-formation rate, SFR, law used and themeaning of the parameters. The exponential law (1) has been used for gal_Etype, whereas (2) has been applied for the other three galaxy types with theSFR quenhing limit (3) additionally appliable only to the ga_lB lass:
SFR(t) = (P2/P1) ∗ e

−t/P1 (1)
SFR(t) = (1/P2) ∗Mgas(t)

P1 (2)
SFR(t) = 0 if (Age − t) ≤ P3 (3)3 http://java.om4 http://www.elipse.org



6 I. Bellas-Velidis, et al.These SFR parameters, for the orresponding types, and the gas infall time(exluding the early type), are found to be of primary importane in modelingthe spetra (Tsalmantza et al., 2007) and are grouped in UGC under thegalPar name (see Tab.1).Table 1. Intrinsi galaxy model parameters galPar for eah galType lass.galTypegal_E gal_S gal_I gal_BgalPar S_infall I_infall B_infallE_sfrP1 S_sfrP1 I_sfrP1 B_sfrP1E_sfrP2 S_sfrP2 I_sfrP2 B_sfrP2B_sfrP3SFR law (1) (2) (2) (2 and 3)Fixing the lasses and varying the orresponding parameters within properranges, we reated a large set of syntheti galaxy spetra that showed goodoverage of the two-olor diagrams of observed galaxies (Tsalmantza et al.,2009). This base set of syntheti spetra has been extended reproduing itfor di�erent redshift values z within 0.0 - 0.2 range and for random valuesof the oe�ient Ao (range 0.0 - 6.0, equally distributed in log-sale) of thetotal galaxy extintion (TGE) towards the soure. The latter is based on theextintion law (Cardelli et al., 1989) where Ao is the �rst oe�ient (lose toAV for early stars) and the seond is �xed to Ro=3.1.The extended set of syntheti spetra has then been used to produe theGaia BP/RP simulated spetra library. The simulations are provided by CU2group with their Gaia Objet Generator pakage, GOG (Isasi et al., 2010). Arepresentative set of syntheti spetra and their BP and RP simulations, inthe very �rst library, are illustrated in Fig.2.In the UGCv10 release, the GOG7 library of galaxy spetra has been used.It is simulated for three Gaia magnitudes (Gmag=15.0, 18.5 and 20.0). Instru-mental and alibration noise is properly applied and the spetra are averagedfor a multi-epoh observations simulation with the number of transits varyingfrom 40 up to 80.3. UGC algorithm and implementationThe UGC system shall provide for eah galaxy spetrum observed duringthe Gaia mission a taxonomy lassi�ation galType lass-probability and theastrophysial APs_gal parameters predition. The latter inlude the galaxymodel's star formation parameters, galPars (Tab.1), and the two externalparameters in�uening the intrinsi galaxy spetrum, the redshift z and theTGE oe�ient Ao.A supervised learning algorithm, Support Vetor Mahines (SVM), isused. It is appliable to both, the lassi�ation (Cortes & Vapnik, 1995) and



UGC for ESA/Gaia mission 7

Fig. 2. Top: Pegase.2 syntheti spetra of representative galaxy types (emission lines, ifany, not inluded); Bottom: The syntheti spetra (emission lines inluded) simulated forGaia BP and RP instrument without applying redshift, extintion and instrumental noise.



8 I. Bellas-Velidis, et al.the parameter regression problems (Druker et al., 1997). A �labeled� data setis neessary for the learning proedure. In a parameter regression, the train-ing set ontains the input data (simulated galaxy spetra) and the desiredoutputs, the priori known parameter values used to reate these spetra. TheSVM maps the input/output vetors to a higher dimensional spae applying anonlinear kernel funtion and reates a maximal separating hyperplane, SVM-model for this parameter. The SVM-model an then be applied to predit thisparameter values when parsing unknown spetra. On the other hand, in themultilass lassi�ation problem, the training output is a numerially odedtaxonomi lass. In this ase, the trained SVM-model applied to an unknownspetrum estimates the probabilities the soure to belong to the spei� lass.The lassi�ation mode of SVM is used to reate the SVM-model for the gal-Type parameter to lassify the galaxy spetra whereas a model per parametershall be onstruted in regression mode for eah of the APs_gal parametersvalue predition.

Fig. 3. The learning, appliation and heking funtions of the Unresolved Galaxy Classi�er(the dark-shaded elements are parts of the Gaia ground-based data proessing pipeline).The SVM algorithm implemented in LIBSVM library (Chang & Lin, 2007)is used in UGC. The urrent implementation, UGCv10 (Fig.3), onsists of twomodules, UGC_Learn and UGC_Apply, that provide the learning and theappliation funtion, orrespondingly. One more module, not desribed here,will be provided for furthermore automated heking the UGC performanein order to analyse and, if neessary, to update the algorithm during themission data proessing yles. The learning is used to prepare o�ine andto provide the �trained� SVM-models. On the other hand, the appliation



UGC for ESA/Gaia mission 9funtion is being implemented as part of the DPAC ground-based pipeline forGaia siene data proessing.3.1. Learning moduleThree tasks are provided by UGC_Learn module to prepare the SVM-models,one model at a time. Spei� parameters of the SVM are neessary to be tunedto ensure the model's optimal performane. Then, the SVM-model is reatedin the training proess and is saved. Both, the tuning and the training, useone and the same labeled data set (galaxy spetra with priori known lassand parameters). The trained SVM is �nally tested with another labeleddata set for performane estimation. The sequene of these three tasks isapplied o�ine to prepare SVMs for the lassi�ation and for eah of thegalaxy parameters resulting in a set of �fteen SVM-models. Moreover, suhsets are obtained for partiular soure magnitudes and for di�erent ranges ofthe external parameters in�uening the galaxy spetra (see below).In order to improve the UGC performane, following test results froma previous implementation (Bellas-Velidis et al., 2010), it has been deidedto �split� the total range of the two external parameters that in�uene theintrinsi spetra of galaxy models. In addition to previously �xed three rangesin soures magnitude Gmag, four sub-ranges for the redshift z and �ve sub-ranges for the extintion oe�ient Ao (see Tab.2) have been spei�ed.Table 2. Appliation ranges de�ned for SVM-models and their oding. The �total ranges�are de�ned only for the redshift z and for the extintion oe�ient Ao initial estimation.Gmag z AoG150 13.0-16.0 Z0020 0.00-0.20 A0060 0.0-6.0G185 16.0-19.0 Z0005 0.00-0.05 A0005 0.0-0.5G200 19.0-20.0 Z0410 0.04-0.10 A0010 0.0-1.0Z0915 0.09-0.15 A0520 0.5-2.0Z1420 0.14-0.20 A1535 1.5-3.5A3060 3.0-6.0The total ombination of the de�ned ranges required to tune, train andtest 1350 SVM-models. The �rst tests showed that galaxy parameters regres-sion is not e�etive for the faintest magnitudes. So well, it has been foundthat the smallest extintion range SVMs does not provide better auraythan the next one. Finally, there is a redundant: the ombination of the totalrange for z with the sub-ranges for Ao and vie versa. Following this, thetotal number of SVM-models, that are really usable and neessary for theUGC appliation, has been redued to 534.3.2. Appliation moduleThe UGC_Apply module is intended to run online as part of the earth-basedGaia data proessing pipeline. The appliation module will be ativated every



10 I. Bellas-Velidis, et al.time when a galaxy spetrum is identi�ed. This identi�ation is provided byanother software pakage of the pipeline, the Disrete Soure Classi�er, DSC(Smith et al., 2011). The UGC_Apply runs a sequene of two tasks: seletionand proessing. Firstly, it will selet the spetrum if it is validated for itssuitability as galaxy or galaxy-like, based on prede�ned riteria. Only whenvalidated, the spetrum will be proessed by the seond task.The UGC_Apply proessing funtion is illustrated in Fig.4. A spei�pre-proessing is applied to the spetrum, onverting it to a proper formas required by the trained SVMs. Then, based on the soure's magnitudeGmag, it is �xed the proper set of SVM-models to be used. Follows an initialestimation of the two external parameters z and Ao. The orresponding twoSVMs trained for the total range of these parameters are applied to the soureto provide their �rst estimate.

Fig. 4. The proessing task of the Unresolved Galaxy Classi�er appliation moduleUGC_Apply. This task is applied only if the soure has been already validated as galaxyor galaxy-like by the front-end seletion task of the appliation module.These initial values are now used to �x the appliable subset of spei�-range SVM-models. Suh a subset has been trained to provide lassi�ationand parameters regression for spetra in�uened by the redshift and the ex-tintion varying within a spei� part of their total range (Tab.2). The or-responding SVMs from the subset are then used to perform galType lassi-�ation and all the APs_gal astrophysial parameters regression (inludinga �nal estimation of the two external parameters). Beause of sub-rangespartially overlapping, there an be appliable one, two, or four subsets ofSVM-models. In the latter two ases, a proper weighting of the estimates isprovided. Finally, the results are output for saving in the Gaia Main Database.



UGC for ESA/Gaia mission 114. UGCv10 performaneUGC performane for galaxy lassi�ation and for the two external parame-ters regression is tested with one and the same basi set of syntheti spetrasimulated for three magnitudes (Gmag=15.0, 18.5, and 20.0) of the soures;the performane for the galaxy internal parameters has been tested for the�rst two magnitudes only. This basi set is reated for four prede�ned galaxytypes, varying only spei� galaxy model parameters, and applying randomredshift z and extintion Ao within prede�ned ranges (see Setion 2).The UGC appliation module has been tested on 70233 galaxy spetra.On a omputing node of about 0.5GFlops/s the pure CPU time was 4600s,leading to about 0.066s or 34MFlops per soure. About 1.5GBytes Java heapspae is required for UGC appliation module to run.4.1. Galaxy type lassi�ation performaneUGC provides for eah soure a lass-probability vetor with four elements,the normalized probabilities (sum to be unit) for the soure to belong to eahof the prede�ned galaxy types. The element orresponding to the soure'sreal lass ontains the so-alled True-Positive (TP) probability. If one of thefour probabilities is above 0.5 the galaxy is onsidered positively lassi�ed. Ifall the probabilities are below 0.5 the soure lass is unde�ned. In the aseof positive lassi�ation, if the probability orresponds to the real (a prioriknown) lass of the galaxy, it is onsidered True-Positive lassi�ation, orTPC, else it is ounted as False-Positive lassi�ation (FPC).

Fig. 5. The UGC performane for galType lassi�ation in the Gmag=15.0 and 18.5 sourestests. For eah lass, the perentage of the ases with True-Positive probability above 0.5(dark-shaded bars) gives the TP lassi�ation performane for the lass.The distribution of the TP lass-probability estimates in the two mag-nitude tests (Gmag=15.0 and 18.5), for eah of the four subsets of spetraorresponding to a prede�ned galaxy lass, is presented in Fig.5. The ases ofTPCs (TP probabilities > 0.5) are shown dark-shaded. In the faintest mag-nitude test (Gmag=20.0), not presented here, almost all the ounts for thedi�erent probability ranges are below 20%.



12 I. Bellas-Velidis, et al.Table 3. UGC lassi�ation performane given by the perentage of True-Positive (bold)and False-Negative lassi�ations for the three testing sets of spetra with di�erent Gmag.Galaxy model UGCv10 lassi�ation performaneReal Soures Gmag=15.0 Gmag=18.5 Gmag=20.0galType number E S I B E S I B E S I Bgal_E 1620 94.1 4.9 0.0 0.0 78.1 19.1 0.0 0.3 44.8 34.4 0.0 7.0gal_S 6851 0.6 98.7 0.2 0.0 3.9 90.6 0.1 2.7 5.9 67.4 0.0 15.9gal_I 1107 0.0 5.7 88.9 2.2 0.0 8.4 50.8 26.5 0.0 11.6 30.2 42.6gal_B 8817 0.0 0.2 0.5 99.1 0.1 2.0 2.5 93.7 0.4 7.3 1.9 83.4The lassi�ation performane is usually presented by so-alled onfusionmatrix where the elements show the perentage of objets of a given lass thathave been positively lassi�ed. The diagonal elements show the perentageof the objets with True-Positive lassi�ations for the orresponding reallass, whereas the other elements on eah row ount the FPC's. The UGCperformane in the three magnitude tests is presented in Tab.3.As this an be seen from Fig.5 and Tab.3, the UGC lassi�ation perfor-mane is very good for the bright soures (Gmag=15.0). The perentage of TPlassi�ations is very lose to 100% for the two best lassi�ed types, gal_Sand gal_B, it is about 95% for the gal_E and a little below 90% for gal_Itype. The lassi�ation is aeptable for faint soures (Gmag=18.5), providingTPC above 90% for gal_S and gal_B, around 80% for gal_E and falling toaround 50% for gal_I. Finally, for the faintest soures (Gmag=20.0), it is stillaeptable for the best lassi�ed S and B-type, but there is a problem forthe other two types. It seems that in this ase we an still provide a two-lasslassi�ation ombining E with S in an �early� galaxy type, and I with B ina �late� type. On the other hand, the relatively worse performane for gal_Iould be aused by the small number of simulated spetra of this type.4.2. External parameters regression performaneThe two parameters, z and Ao, are estimated by UGC in a two-stage pro-ess (see Setion 3.2). Initially, they are estimated applying the orrespondingmagnitude SVM-models that has been trained for the total range of these pa-rameters. The initial estimate is used for �xing whih SVM-models, trainedfor spei� sub-ranges of these parameters (Tab.2) shall be used for �nal es-timation. The UGC performane in these two ases is presented in Tab.4 bythe Root-Mean Square Deviation (RMSD) of the estimated from the real (apriory known) value in the testing set of spetra. The orresponding normal-ized value, NRMSD, in perents of the parameter range is also given for the�nal estimation. The performane improvement is evident in the �nal ver-sus the initial estimation for both parameters and that this improvement isgreater towards the brighter soures. This general performane is even betterillustrated in Fig.6 plotting the �nally estimated versus the real values forthese parameters for the three magnitude tests. In eah �gure there is aninset showing the histogram of the di�erenes (estimated minus real value).



UGC for ESA/Gaia mission 13Table 4. UGC regression performane for the external parameters initial and �nal estima-tion given by the Root-Mean Square Deviation for the three sets of spetra with di�erentG magnitude. For the �nal estimation, the range-normalized, NRMSD, is also shown.Galaxy model UGCv10 regression performaneExternal Parameter Gmag=15.0 Gmag=18.5 Gmag=20.0APs_gal Range initial �nal initial �nal initial �nalz 0.0 - 0.2 0.005 0.002 (1.0%) 0.015 0.011 (5.5%) 0.030 0.026 (13.0%)Ao 0.0 - 6.0 0.08 0.04 (0.7%) 0.18 0.15 (2.5%) 0.30 0.29 (4.8%)

Fig. 6. Redshift �z� (left panel) and extintion �Ao� (right panel) estimation performanefor Gmag=15.0, 18.5 and 20.0 soure sets. Eah inset shows the orresponding histogramof the di�erenes between the UGC estimated and the real values.



14 I. Bellas-Velidis, et al.The UGC very good performane for extintion oe�ient Ao estimation,for all the magnitudes up to the faintest soures is learly shown in Fig.6(right panel). It is also very good for the redshift z (left panel) for the brightsoures and it is relatively good for Gmag=18.5, but in the latter ase thereis a number of systematially deviated estimations. for the faintest souresthis pattern of deviations isF quite extended, ausing the estimation to bedoubtful here. An investigation is neessary to �nd the reasons leading to theperformane degradation.4.3. Galaxy model parameters estimation performaneThe UGC performane for the galaxy model parameters regression has beenfound unaeptable for the faintest magnitudes in earlier tests, so SVM-models have not been trained for the ase. The performane, the RMSD andthe orresponding NRMSD, is presented in the Tab.5 for the other two Gmagtests (15.0 and 18.5). For the parameters of eah partiular galType model,only the orresponding spetra subset has been tested. Normalized RMSDvalue above 20% indiates rather doubtful performane for the parameterregression.Table 5. UGC regression performane for the galPar parameters estimation given bythe Root-Mean Square Deviation and the range-normalized NRMSD for two testing sets ofspetra with di�erent G magnitudes (unaeptable performane is marked by an asterisks).Galaxy model UGCv10 performanegalType galPar Range Units Gmag=15.0 Gmag=18.5gal_E E_sfrP1 10 - 14400 My 696 (4.8%) 1459 (10.1%)E_sfrP2 0.20 - 1.45 M⊙ 0.06 (4.8%) 0.16 (12.8%)gal_S S_sfrP1 0.30 - 2.40 0.56 *(26.7%) 0.60 *(28.6%)S_sfrP2 5 - 30000 My/M⊙ 3521 (11.7%) 4979 (16.6%)S_infall 5 - 16000 My 1336 (8.4%) 2714 (17.0%)gal_I I_sfrP1 0.60 - 3.90 0.61 (18.5%) 0.68 (20.6%)I_sfrP2 4000 - 70000 My/M⊙ 14400 (21.8%) 18048 *(27.3%)I_infall 5000 - 30000 My 5759 *(23.0%) 6143 *(24.6%)gal_B B_sfrP1 0.60 - 3.90 0.56 (17.0%) 0.74 (22.4%)B_sfrP2 4000 - 70000 My/M⊙ 11881 (18.0%) 17250 *(26.1%)B_sfrP3 1 - 150 My 15.03 (10.1%) 29.6 (19.9%)B_infall 5000 - 30000 My 5828 *(23.3%) 6113 *(24.5%)The regression performane for estimation of the intrinsi parameters ofthe four galaxy model types is illustrated in the panels of Fig.7 and Fig.8. Eahpanel shows the estimated versus the real value of the partiular parameterin the two magnitude tests. The UGC shows a good performane for the twoparameters of the gal_E model in both magnitude tests, with the exeptionof E_sfrP1 real values very lose to zero or near their upper limit.Relatively good is the UGC performane for the gal_S parameters withexeption of the S_sfrP1. Even worse, in the latter ase it is lear that the
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Fig. 7. UGC regression performane for the gal_E, gal_S and gal_I types parametersgalPar for the Gmag=15.0 and 18.5 soure sets.
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Fig. 8. UGC regression performane for the gal_B type galPar parameters.UGC is unable to estimate the parameter even for bright soures. Same isthe situation with the infall parameter for the gal_I and the gal_B mod-els. For these two models, there is also a problem with the sfrP2 parameterestimation for faint soures (Gmag=18.5). For suh soures, there is also un-satisfatory performane for the B_sfrP3 parameter estimation. Eah ase ofunaeptable performane is marked by an asterisk on Tab.5.The small number of irregular galaxies spetra (Tab.3) an not be the rea-son of an unsuessful training, as for the gal_B models this number is quitelarge. Possibly, either the spetral hanges aused by these parameters are re-ally undetetable beause of the instrumental S/N, the TGE and the redshiftin�uene, or the parameter values range and sampling shall be optimized.ConlusionThe SVM-based algorithm implemented in UGCv10 is promising to provide avery good performane for unresolved galaxies spetra lassi�ation with thefuture Gaia mission. The tests based on simulated spetra library show alsothat UGC an estimate with good auray the galati extintion towards theobserved soures as well as their redshift. Aeptable regression performaneis shown for most of the galaxy model parameters for brighter soures, whereasthere is a problem with some of the parameters, mostly in the fainter rangeof magnitudes.
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