On the nature of the short-term variability
of the cataclysmic binary star KR Aurigae
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Abstract. We study the character of the optical variability of the dwarf nova KR Aur on
intra-night time scales. Based on high-accuracy light curves in different colors we performed
a number of tests, aiming to reveal the nature of the variability and the processes that
drive it. The typical auto-correlation times of the light curves are 30—100 min. The slopes
of the structure functions give a hint that the so called self-organized criticality within the
accretion disk may drive the continuum variability. We find no clear indications for inter-
band time delays, time asymmetry, and the presence of low-dimensional chaos in the light
curves. The obtained results from the tests are promising, but so far mostly inconclusive.
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Bbpxy npuposara Ha 6bp3aTa IIPOMEHJINBOCT
Ha KaTakJu3Mu4dHaTa ABoiiHa 3Be3ga KR Aurigae

Pywmen Bauer, Cernana Boesa, IIsetan ['eoprues,
T'eopru Jlares, Bopucias Cnacos, Kupun Crosinos, Ceeriia IIBeTkoBa

Uscneasan e xapakTepbT Ha ONTHYHATA IIPOMEHJMBOCT Ha HOoBaTa-Kymke KR Aur B
paMKuTe Ha TO emHa Homl. [IpuiokeHW ca HIKOJIKO TECTa BbPXY BUCOKO-TOYHU KPUBU
Ha OJISICHKA, EJSIU 13 U3SBIT MPUPOJATA HA MPOMEHJMBOCTTA W IPOIECUTE, KOUTO s
yIpaBisBar. TUINYHATE aBTO-KOPEJIAIMOHHN BpeMeHa Ha KpuBuTe Ha Ousicbka ca 30—100
MuH. Hakyionure Ha crykrTypHuTe (QyHKIMM HAMEKBAT, Y€ MOXKe 6 IPOMEHJIMBOCTTA HA
KOHTHHYyMa C€ IPEeJIW3BUKHA OT T.H. CAMO-OPraHM3MpaHa KPUTUYHOCT Ha jucka. He ca
HaMEpEeH! SICHU WHINKATOPU 33 M30CTABAaHE HA MPOMEHUTE B OJISICHKA B €IUH IBSIT CIPSIMO
IpyT, Ha aCUMETPHs Ha IIPOMEHUTE B OJIsICbKA M HA MPUCHCTBUE HA Xa0C C HUCKA PA3MEPHOCT
B KpuBHUTE Ha OsrsAcbKa. [losydennre oT TecToBeTe pe3ysiTaTi ca 0OemaBalli, HO ca BCE OIIle
HE3aKTIOYNTETHH.

1 Observations and reduction

We used light curve (LC) data of KR Aur, obtained during several nights,
quasi-simultaneously in different colors and/or telescopes. The telescopes in
use were the 2m RCC telescope, the 50/70cm Schmidt camera and 60cm
Cassegrain reflector of the Rozhen NAO, Bulgaria, as well as the 60cm
Cassegrain reflector of Belogradchik observatory, Bulgaria.

All telescopes were equipped with CCD cameras and standard UBVRI
filter sets. Repeating exposures of 30-120 s were taken with one or more in-
struments in one or more filters to achieve a multicolor quasi-simultaneous
coverage of the object’s variations. After flat field and dark current correc-
tions, the aperture magnitudes of the variable objects were extracted and
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calibrated through standard stars in the filed, and the LCs of KR Aur were
built. The time durations of the LCs were 2-9 hours.

Only high-quality data was used for this analysis, i.e. when KR Aur was
in a high state and the respective photometric errors were below 0.01-0.02
mag. Provided the typical intra-night variations reached 0.5-1 mag, the preci-
sion was high enough to successfully perform the variability tests, mentioned
below. A LC example is shown in Fig.1.

The short-term variability (flickering) of KR Aur is investigated also by
Georgiev et al. (2012) with help of the fractal dimensions based on the local
amplitude and local RMS of the light fluctuations. The main result is that
the flickering seems to be at least bi-fractal.
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Fig. 1. Rapid variations of KR Aur during the night of 30.12.2010, observed in 4 colors,
quasi-simultaneously with 3 telescopes.

2 Tests on the light curves

Although repeating exposures were taken to build the light curves, for a
number of reasons the time interval between these exposures was not pre-
cisely a constant. Furthermore, the exposure times often differed with the
telescopes/wavebands, making the spacing between the points of the light
curves not equal and not constant. Some of the tests we performed require
equal spacing and simultaneity. For that purpose simultaneous, equal-spaced
light curves were built from the real data by linear interpolation over the
missing parts.

2.1 Auto-correlation function (ACF) — searching for correlation
times

Building the auto-correlation function is useful for finding self-similarities in
the light curve and to find the correlation time, i.e. the time after which the
light curve will have "no memory” about the current conditions. Oscillating
pattern of the ACF is often indicative of (quasi)periodicity.
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Figure 2 shows 4 ACFs built from observations with the 2m RCC tele-
scope. The observations from 30.12.2010 produce 2 light curves due to gaps
in some of the data sets. ACF shows sharp decline and crosses zero after
30-100 min, determining various correlation times for different LCs.
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Fig. 2. The ACF of KR Aur from 4 observations with their evening dates shown.

2.2 Inter-band cross-correlation function (CCF) — searching for
time delays

Finding possible time lags between LC of various wavebands could give a
strong clue about the nature of the processes driving the variability. For in-
stance, if red color variations lead the blue ones, it might be an indication
for evolving disturbance, traveling down the accretion disk, taking into ac-
count that the disk temperature drops with the radial distance. The opposite
behavior may indicate explosive processes with slow temperature evolution
(decrease), reprocessing of hard radiation from the center, etc. In any case
finding any ”wavelength — time lag relation” would serve as a boost for the
theoretical modeling.

To find inter-band time lags, a similar to ACF approach was used, this
time correlating 2 LCs of different colors and obtaining a time dependant
CCF. Unlike the ACF, always showing a maximum (equal to one) at zero
lag, the CCF will have a maximum at non-zero lag, provided the two LCs
show repeating patterns with a time offset, one in respect to the other. If the
two LC’s are completely independent, the CCF will always be close to zero
and if they are exactly the same, the CCF will be identical to ACF.

Figure 3 shows the CCF between V-band and I-band, during the night of
30.12.2010. We used the interpolated CCF method of Gaskell & Sparke (1986)
to build the CCF. The maximum is at about —1 unit, which in this case
corresponds to —30 sec, indicating a possible lag of V-band behind I-band,
i.e. longer wavelengths leading. Taking into account that the typical exposures
were 30 sec (V-band) and 60 sec (I-band), as well as the CCF uncertainties
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(not shown here), the lag should be considered as close to zero. Furthermore,
on several other occasions with other wavebands used, the CCFs were found
to peak at zero. In other words we find no conclusive evidence of inter-band
time delays exceeding ~ 30 sec.
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Fig. 3. Time-dependent CCF between I-band (60 cm Rozhen telescope) and V-band (2 m
Rozhen telescope) during the night of 30.12.2010

2.3 Structure function (SF)

The first order structure function (e.g. Di Clemente et al., 1996) is often used
to analyze unevenly spaced time series. It is defined as:

SF(r) = \/5(< Im(t+7) = m(t)| >* —o?),

where m(t) is the LC, o is the standard error of the photometry (here we
adopt 0=0.01 mag) and the averaging is over all magnitude differences, time
separated by 7 within some Ar.

The SF will generally be a rising function with 2 plateaus, one at 7 ap-
proaching 0, where the photometric errors will dominate the variability and
the other at some 7,,4,, where a saturation of the variability amplitude will
occur.

Of importance is the slope of the linearly rising part of the SF,

B =dlog SF(r)/d log 7.

This slope is of significance for understanding the processes, driving the
variability (Kawaguchi & Mineshige, 1999). A larger slope, e.g. > 0.5, might
be an indication of a shot-noise driven variability, i.e. the variations are due
to many independent, explosive events (”shots”). The opposite case, § < 0.5,
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gives preference to accretion disk instability models (Kawaguchi et al., 1998),
e.g. those based on so called self-organized criticality (Bak et al., 1988).

Figure 4 shows the V-band SF's for 4 epochs of observation. One notices
the absence of a plateau for 7 — 0, indicating variability structure exceeding
photometric errors on time scales less than 30 sec. This means that for the
high states of KR Aur, exposures of 10-15 sec are preferable (at least with a
2m class telescope) in spite of the slightly larger photometric errors. On the
other hand there are hints of a saturation around 5-10 ksec, however, as this
is the typical monitoring interval, one should be careful with the conclusions
concerning Tpqz-
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Fig. 4. V-band SFs for KR Aur for 4 epochs of observations. 2m RCC telescope data.
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The slopes of the SFs for all nights of monitoring are consistent and are
below 0.35, being consistent with the disk instabilities model, but seems to
rule out the shot noise model.

2.4 Time asymmetry of the light curves

Additional test to discriminate between different models is based on the time
asymmetry of the light curve.

Explosive processes will naturally produce sharp inclines with slow de-
clines in the light curve. On the other hand, slowly evolving disturbances
(e.g. in an accretion disk) will produce slow inclines with a sharp decline
when the disturbance reaches the inner radius of the accretion disk, where
it will eventually abruptly dissipate. On the other hand, stochastic processes
like random walk, or dynamical systems with a Hamiltonian, not directly
depending on time, would mostly produce time symmetric light curves.

The time symmetry of a light curve, even the non-uniformly sampled one,
can successfully be tested by building the SF separately — for the rising and
decaying trends of the light curve, SF*(7) and SF~(7), respectively (see
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Kawaguchi et al., 1998, for details). The method works in a case where the
overall brightness is due mostly to a superposition of different, light generat-
ing events (but not to shadowing, for instance). The difference gives the time
asymmetry of the light curve as a function of time.
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Fig. 5. V-band time asymmetry search of KR Aur light curve.

Figure 5 shows the time-asymmetry test applied to the light curves used
in Fig. 4. A positive SF*(7) — SF~(7) difference in this case means pre-
dominantly slow inclines and fast declines in the light curve, i.e. as in the
disk-instability models. The results from different nights, however, are not
consistent. For intervals shorter than about 1 ksec, there is no apparent time
asymmetry, meaning perhaps that some time symmetric random processes
govern the LC at these scales.

2.5 Search for chaos

Time series of many astrophysical objects show variability patterns that can
often be described as "random”, since the power spectra do not reveal any
significant periodicity. Except for the ”true” random behavior, e.g. the Brow-
nian motion, where the dynamical system has an immensely large number of
degrees of freedom (in order of the number of particles in the liquid), there
are cases of dissipative systems, where the dynamics is governed by only a
few (3 — 5) degrees of freedom (variables), but still the behavior appears to
be "random” or ”chaotic”.

In the famous Lorenz attractor case (Lorenz, 1963), a system of N=3 non-
linear differential equations has a solution, that once entering some volume of
the phase space, stays bound and never leaves this sub-space of (non-integer)
dimension d < N.

These solutions are so called ”strange attractors” and such a behavior is
often described as ”deterministic chaos”. Trajectories of a strange attractor
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evolve into a finite volume in the phase space, never returning to the same
points. The divergence between two close trajectories increase exponentially
in time and the long-term predictions are impossible. Consequently, any vari-
able of a strange attractor system can appear as "random” as a function of
time, even if it is deterministic in nature.

Lorenz attractor (XY plane)
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Fig. 6. Lorenz attractor.Upper panel - X-Y plane, lower panel - X(t).
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To check if the short-term variations of KR Aur could possibly be gov-
erned by a low-dimensional dynamical system, we applied the correlation
integral (CI) method (see Vio et al., 1992; Lehto et al., 1993; Provenzale et
al., 1994; for application to other accreting sources) to the V-band light curve
of the object. This method is based on the construction of a new (empirical)
phase space from the available N discrete data points. The data set (e.g. the
light curve) is separated into strings of length d observational points. Thus,
each string can be considered as a d-dimensional vector (X;), embedded in
the d-dimensional empirical phase space. The number of vector pairs with a
distance smaller than 7, as a function of r, is computed for different d and
related to the total number of pairs (n,) for that d.

Thus, the correlation integral can be written as:

Ca(r) = 7 2O = |Xi = Xyl); .5 =1, ..., Nyi £ j

where @ is the Heaviside’s function. So, if the dimension of the attractor
is D, then:

Cy(r) < rd, if d < D and Cy(r) < rP, if d > D.

Therefore, increasing the embedding dimension d leads to saturation when
d > D, thus allowing estimation of the attractor dimension. Generally

D— (dlnC(r) /dInr), when r — 0

where D is the correlation dimension of the attractor and can be a non-
integer value.

Knowledge of D allows determination of the number of differential equa-
tions, describing the dynamical system, IV, i.e. the first integer value, larger
than D and therefore makes possible drawing conclusions about the physical
process driving the variability.

As an example, Figure 6 shows the 3D Lorenz attractor. The upper panel
shows the solution of the Lorenz system in X-Y plane, and the lower one —
only one axis (say X) as a function of time, which might represent the only
variable we observe in a real situation (e.g. the continuum flux).

We analyzed 3 segments of the V-band light curve of KR Aur taken
during 2 nights with the 2m RCC telescope in order to search for signatures
of low-dimensional chaos.

Figure 7 shows the results from the application of CI method to different
LCs — the lower panels, from left to right, are Lorenz attractor, white noise
and a combination of attractor with white and shot noise (a number of shots
with sharp rises and slower decays, randomly distributed). The upper panel
is the KR Aur data for the 3 segments (30.12.2010a, b and 31.12.2010 respec-
tively). Each panel shows the correlation integral vs. its slope for different
embedding dimensions (from 1 to 15, in different colors). Saturation for some
slope value is considered an indication for the presence of low-dimensional
chaos. Such is visible (and expected) for the Lorenz attractor toward D = 2
(2.06 is the real Lorenz attractor dimension), correctly identifying the num-
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ber of the variables (equations) that govern this dynamical system — 3 (the
first integer larger than 2.06).

Naturally, the white noise shows no saturation (infinite degrees of free-
dom) and for the combination of both the situation becomes more compli-
cated. Clearly however, the KR Aur results resemble mostly this case, but in
general shows no clear indications of low-dimensional chaos. Of course, one is
to take into account the so called Ruelle criterion, stating that the maximal
embedding dimension that can be determined from a series of N points is
Dpin <2logN, which in our case means about 5. Since the accretion process
is typically governed by at least 5 equations, one clearly needs more data
points in the light curve to search successfully for a low-dimensional chaos.

KR Aur, 30.12.2010, part 1 KR Aur, 30.12.2010, part 2 KR Aur, 31.12.2010
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Fig. 7. Application of the CI method. Upper panel — KR Aur data. Lower panel —
artificial data, from left to right: Lorenz attractor, white noise and a combination of white
and shot noises. Different embedding dimensions (from 1 to 15) are given in different colors.

3  Summary

We performed various tests on the intra-night light curves of KR Aur. Some
of the tests, like the tilt of the structure function, the inter-band time delays
(if real) suggest that the variability on time scales of 10-100 min might be
driven by evolving disturbances, traveling from the periphery to the center
of an accretion disk (disk instability model). These tests, however, are not
enough to be considered as a proof and different interpretations are also possi-
ble. Furthermore, the time asymmetry test gives inconsistent results. Shorter
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variations (on scales less that 5-10 minutes), appear to be predominantly
stochastic in nature. We were not able to establish the shortest time scale of
KR Aur variability but the object certainly appears to show variations much
exceeding the photometric errors (e.g. 0.01 mag) even on a 30 sec time scale.
We have not been able also to confirm that a dynamical system, governed by
less than 4-5 parameters (equations) drives the variability.
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