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Abstract. The method of the robust regression of Rousseeuw (1984), based on the method
of the least sum of the trimmed squares of deviations (LTS), is described. The ordinary
method of least squares (OLS) measures the scatter of the deviations summing all N squares
of deviations. The LTS sums only the left half of the ordered squares of the deviations,
concerning at least N/2+1 data. Large deviations may be presented in the right part of
the order, but LTS ignores them. Thus LTS can withstand asymptotically 50% fraction of
large deviating data and still remain robust. From this point of view the OLS method has
zero robustness. The robust regression method tests and quali�es through LTS each available
pattern of possible solution: each point in 1D case, each line through pair of points in 2D case,
each plane through triad of points in 3D case, etc. The pattern with the shortest LTS scatter
is considered as 1st approximation of the solution. Usually the 2nd approximation is carried
out by the OLS, after removal of the outliers in respect to the 1st approximation. In the
present work seven types of utilizable deviations of a point from the line pattern are tested
in the 2D case: vertical, horizontal, orthogonal, quadratic mean (diagonal), geometric mean,
harmonic mean and arithmetic mean. It is shown that the use of geometrical mean deviation
leads to well reproducing of the bisector of the direct and reverse regression in both ordinary
and robust methods. However, in the general case, when the standard statistical assumptions
are violated strongly, and (or) when the regression slope A is A À 1 or A ¿ 1, the orthogonal
deviations are the natural tool for both regressions. In the multidimensional cases, depending
of the type of used deviations, the �nal application of the OLS may be di�cult or impossible.
Therefore in the present work the robust regression method is complemented with a 2nd
approximation in the spirit of the robust regression too. It is based on extraction of several
(up to 10-20) best patterns of solutions (points in 1D case, pairs of points in 2D case, triads
of points in 2D case) and creation of additional intermediate patterns (middle of points,
bisectors of lines and planes). These additional patterns are tested again by the LTS in
a search for a better solution. Thus the inner accuracy of the method may increase 3-5
times. An empirical approach to the slope error estimation by means of the cumulative error
function, built on the trimmed best patterns of the solution, is also introduced. The robust
regression is applied on examples for 1D mode estimations and 2D regressions without or
with intercepts. Main sequence �tting on color-magnitude diagram with 14 − 19% fraction
of strongly deviated stars is demonstrated.
Key words: data analysis - methods, statistical - methods; PACS 95.75.z, 95.75.Pq

Âúâåäåíèå êúì ìåòîäà íà óñòîé÷èâàòà ðåãðåñèÿ íà Ðóñþ
Öâåòàí Á. Ãåîðãèåâ

Îïèñàíà å óñòîé÷èâàòà (ðîáàñòàòà) ðåãðåñèÿ íà Ðóñþ (1984), áàçèðàíà íà ìåòîäà íà íàé-
ìàëêàòà ñóìà íà îòáðàíèòå êâàäðàòè íà îòêëîíåíèÿòà (ÌÎÊ). Îðäèíàðíèÿò (îáè÷àé-
íèÿò) ìåòîä íà íàé-ìàëêèòå êâàäðàòè (ÌÍÊ) èçìåðâà ðàçáðîñà íà îòêëîíåíèÿòà ñóìè-
ðàéêè âñè÷êèòå N êâàäðàòè íà îòêëîíåíèÿòà. ÌÎÊ ñóìèðà ñàìî ëÿâàòà ïîëîâèíà íà
ïîäðåäåíèòàå êâàäðàòè íà îòêëîíåíèÿòà, îáõâàùàéêè ïîíå N/2+1 áðîÿ. Ãîëåìè îòêëîíå-
íèÿ ìîãàò äà ïðèñúñòâàò â äÿñíàòà ÷àñò íà ðåäèöàòà, íî ÌÎÊ ãè èãíîðèðà. Òàêà ÌÎÊ
ïîíåñÿ àñèìïòîòè÷íî 50% ôðàêöèÿ îò ñèëíè îòêëîíåíèÿ, çàïàçâàéêè óñòîé÷èâîñòòà ñè.
Îò òàçè ãëåäíà òî÷êà ÌÍÊ èìà íóëåâà óñòîé÷èâîñò. Ìåòîäúò íà óñòîé÷èâàòà ðåãðåñèÿ
ïðîâåðÿâà è êâàëèôèöèðà ÷ðåç ÌÎÊ âñåêè äîñòúïåí îáðàçåö íà âúçìîæíî ðåøåíèå -
âñÿêà òî÷êà â åäíîìåðíèÿ ñëó÷àé, âñÿêà ïðàâà ëèíèÿ ïðåç äâîéêà òî÷êè â äâóìåðíèÿ
ñëó÷àé, âñÿêà ðàâíèíà ïðåç òðîéêà òî÷êè â òðèìåðíèÿ ñëó÷àé è ò.í. Îáðàçåöúò ñ íàé-
ìàëúê ÌÎÊ ðàçáðîñ ñå èçâëè÷à êàòî ïúðâî ïðèáëèæåíèå íà ðåøåíèåòî. Îáèêíîâåíî
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âòîðîòî ïðèáëèæåíèå ñå ïðàâè ÷ðåç ÌÍÊ ñëåä îòñòðàíÿâàíå íà ãîëåìèòå îòêëîíåíèÿ
ñïðÿìî ïúðâîòî ïðèáëèæåíèå. Â òàçè ðàáîòà ïðè äâóìåðíèÿ ñëó÷àé ñà òåñòâàíè ñåäåì
âèäà èçïîëçâàåìè îòêëîíåíèÿ íà òî÷êè îò ëèíèÿòà-îáðàçåö - âåðòèêàëíî, õîðèçîíòàëíî,
îðòîãîíàëíî, ñðåäíîêâàäðàòè÷íî (äèàãîíàëíî), ñðåäíîãåîìåòðè÷íî, ñðåäíîõàðìîíè÷íî
è ñðåäíîàðèòìåòè÷íî. Ïîêàçàíî å, ÷å èçïîëçâàíåòî íà ñðåäíîãåîìåòðè÷íîòî îòêëîíåíèå
âîäè äî äîáðî âúçïðîèçâåæäàíå íà úãëîïîëîâÿùàòà íà ïðàâàòà è îáðàòíà ðåãðåñèÿ,êàêòî
ïðè îáèêíîâåíèÿ, òàêà è ïðè óñòîé÷èâèÿ ìåòîä. Îáà÷å, â îáùèÿ ñëó÷àé, êîãàòî ñòàíäàðò-
íèòå ñòàòèñòè÷åñêè èçèñêâàíèÿ ñà ñèëíî íàðóøåíè è/èëè êîãàòî ðåãðåñèîííèÿò íàêëîí
å A À 1 èëè A ¿ 1, îðòîãîíàëíèòå îòêëîíåíèÿ ñà åñòåñòâåíîòî ñðåäñòâî è çà äâàòà âèäà
ðåãðåñèè. Â ìíîãîìåðíèÿ ñëó÷àé, â çàâèñèìîñò îò èçïîëçâàíîòî îòêëîíåíèå, ôèíàëíîòî
ïðèëàãàíå íà ÌÍÊ ìîæå äà å òðóäíî èëè íåâúçìîæíî. Çàòîâà â òàçè ðàáîòà ìåòîäúò íà
óñòîé÷èâàòà ðåãðåñèÿ å äîïúëíåí ñ âòîðî ïðèáëèæåíèå, â äóõà íà ìåòîäà íà óñòîé÷èâàòà
ðåãðåñèÿ. Òî ñå áàçèðà íà èçâëè÷àíå íà íÿêîëêî (äî 10-20) íàé-äîáðè îáðàçöè íà ðåøåíèÿ
(òî÷êè â åäíîìåðíèÿ ñëó÷àé, ëèíèè â äâóìåðíèÿ, ðàâíèíè â òðèìåðíèÿ) è ñúçäàâàíå
íà äîïúëíèòåëíè ïðîìåæäóòú÷íè îáðàöè (ñðåäèíè íà òî÷êè, úãëîïîëîâÿùè íà ëèíèè
èëè ðàâíèíè). Òåçè äîïúëíèòåëíè îáðàçöè ñå òåñòâàò îòíîâî ÷ðåç ÌÎÊ â òúðñåíå
íà ïî-äîáðî ðåøåíèå. Òàêà âúòðåøíàòà òî÷íîñò íà ìåòîäà ìîæå äà ñå ïîâèùè 3-5
ïúòè. Ïðåäëîæåí å è åìïåðè÷åí ïîäõîä êúì îöåíÿâàíå íà ãðåøêàòà íà ðåãðåñèîííèÿ
íàêëîí ÷ðåç êóìóëàòèâíà ôóíêöèÿ íà ãðåøêàòà, ïîñòðîåíà ïî îòáðàíèòå íàé-äîáðè
îáðàçöè íà ðåøåíèåòî. Ìåòîäúò íà óñòîé÷èâàòà ðåãðåñèÿ å ïðèëîæåí çà îöåíêè íà
ìîäèòå íà åäíîìåðíè ðàçïðåäåëåíèÿ è çà äâóìåðíè ðåãðåñèÿ áåç è ñúñ ñâîáîäíè ÷ëåíîâå.
Äåìîíñòðèðàíî å ôèòèðàíå íà ãëàâíàòà ïîñëåäîâàòåëíîñò íà äèàãðàìà öâÿò-âåëè÷èíà
ñ îêîëî 14− 19% ôðàêöèÿ îò ñèëíî îòêëîíÿâàùè ñå çâåçäè.

Introduction

The ordinary least square (OLS) regression is used widely in astronomy, biol-
ogy, economics etc. It is commonly known that the OLS (Y—X) line is the best
when important assumptions hold: (0) the true relation between the variables
is linear; (1) the values of the independent variable (X) are measured with-
out errors; (2) the observed values of the dependent variable (Y) are subject
to errors with mutual independence, zero mean and finite variance (common
for all observations, i.e. case of homoscedastic errors); (3) the X and Y data
do not have intrinsic scatter. The standard OLS analysis is not strict when
any of the accounted assumptions is not filled (see also Isobe et al. 1990 (here-
after IFAB90), Feigelson & Babu 1992 (hereafter FB92), Branham 2001, Kelly
2007).

The OLS conditions are frequently violated in astronomy, where the pres-
ence of heteroscedastic errors (observations with different individual errors)
and intrinsic scatter both in X and Y data is usual. The choice of the indepen-
dent variable frequently is not clear, too. Good examples are the dependences

”mass - luminosity“ for stars or galaxies. They have intrinsic scatters in both X
and Y data, caused by unaccounted factors (ages, metallicities, hidden masses).
Other interesting example is the Hubble diagram, where observation errors of
the redshifts and magnitudes of the galaxies are negligible in respect to the
errors due to the uncertainties in the distances, the corrections for non-Hubble
motions, the intrinsic scatter of the luminosities of the galaxies, etc. (IFAB90).
In such cases different kinds of deviation of the observation point from the fit-
ted line may be used (Sec.1,2). More difficult case is, for example, the fit of the
main sequence on a color - magnitude diagram. The reason is the significant
fraction of outlier points around the main sequence: background stars, evolved
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stars etc. This problem is solved remarkably by the robust regression (RR),
described here (Fig.7,9).

Since the OLS methods found in the standard statistics textbooks and
respective software are not always satisfactory, the astronomers are forced to
search for better tools. Regression methods in astronomy and different im-
provements of the OLS for the cases, when conditions (1) - (3) are not ful-
filled, have been subjects of multitude papers (see also Akritas & Bershady
1996, Tremaine et al. 2002, Kaspi et al. 2005 and references therein). However,
the results, called sometimes ”robust methods“, do not include the cases when
numerous strong outliers exist among the data.

Commonly, the OLS (including its improvements) is considered as per-
fect tool in presence of normal or almost normal errors in Y variable, but it
is worthless in the presence of strongly outlying data. The latter fact is ex-
tremely important when the large errors exist in the independent (X) variable
(Fig.5,7,9). Generally, the problem is also very serious (i) when the number
of outliers is large, (ii) in the multi dimensional (MD) cases, when the visual
control of outliers is almost impossible, (iii) in the image processing, when the
program code must work surely and fast, etc. In such cases RR methods are
necessary.

RR methods with superior performance over OLS in many situations exist,
but they are not yet widely used. The possible reasons may be: (i) difficulties
in the programming and long computing time; (ii) bad choice of the method
in the first attempt of applying (e.g. choice of method which is not really
robust), (iii) the belief that the classical methods have natural robustness;
(iv) the absence of robust methods in many popular software packages (see
also Wikipedia, 2007).

This work emphasizes on the robust non-OLS regression method based on
robust estimator of the scatter of 1D random variable. It is introduced by
Peter Rousseeuw (1984) and is called ”least trimmed squares“ (LTS) estima-
tor (Sec.3). This method can ignore numerous outliers, asymptotically up to
50% of all data, like the 1D median estimator. The LTS estimator recognizes
correctly the mode of 1D random distribution, as well as the location (data
center) in MD cases (Fig.6). In the regression applications LTS places the
best line in 2D case (or the best pale in 3D case, etc.) among most populated
ellipsoid of data distribution (Fig.7,9).

The RR, based on the LTS estimator, is widely discussed in the monograph
of Rousseeuw & Leroy (1987, hereafter RL87). Two ideas build the base of the
RR method. The first one is the examination of each available pattern of
possible solution (single point in 1D case, line through pairs of points in 2D
case, plane through triads of points in 3D case, etc) and revealing the superior
pattern. The second idea is the examination of the patterns by extremely
robust estimation of the scatter (as 1D system of deviations, Sec.2) through
the LTS estimator (Sec.3,4).

The LTS is efficient and relatively simple robust estimator. More sophis-
tical developments in this field can be found in the papers of Rousseeuw &
Yohai (1984), Yohai (1987) and Rousseeuw & Van Driesen (1999). Contempo-
rary information about robust estimators and regressions can be found also in
Internet through the query ”robust regression“ (Fox 2002, Chen 2007, Olive
2007).
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The goal of this paper is to be an introduction into the basic ideas and rec-
ommendable solutions in the field of the extremely non-OLS methods, mainly
about these based on the LTS estimator. Fortunately, the description and
the illustration of the possibilities of the RR method may be carried out full
enough in 1D and 2D cases, while the MD generalization is natural and simple.

Section 1 presents the work of seven methods for measurement of the de-
viation of a point from a line and underlines the potential of the RR over
the OLS regression. Section 2 emphasizes on the superiority of the orthogonal
deviations in the general case of the OLS and RRs, when the assumptions of
the OLS method are strongly violated. Section 3 gives general description of
the robust method and introduces two additions to it: 2nd approximation in
the spirit of the RR and an empirical approach to coefficients error estimation.
Section 4 presents comparison of five 1D estimators with account of the ro-
bustness parameter ”breakdown value“. Section 5 presents a few applications
of the methods in 1D and 2D cases.

1 Seven types of deviations form the tested line and the
potential of the RR in the MD case

Since the problem is the placing of the regression solution (location, or line,
or plane, etc) in the most populated region of data, the measuring of the
deviations becomes important component of the method. Therefore, we must
regard this problem before the problems of the RR.

In the particular case when the location (or the center of the distribution)
is searched in 1D, 2D, etc. cases, the simple Euclidian distance is unique and
enough (Fig.6). However, in the general 2D regression case, and more in the
MD applications, many possibilities exist. We did not find recommendations
in this field for the case of RR and were forced to study the problem.

Seven types of deviations in the 2D case were tested for the present work.
Each of them may be used for deriving explicit OLS formulas for 2D regression
coefficients, for regression error etc. (IFAB 90, FB92, Sec. 2). However, any
MD OLS regression based on deviations that are not solely ∆y or ∆x require
solving complicated systems with nonlinear equations. Contrariwise, the RR
method involves only deriving the formula for computing the chosen type
of deviation from the line, plane, hyperplane, etc. Further the scatter of all
computed deviations of the chosen type will be estimated by means of the
(1D) LTS method.

Figure 1a presents five types of deviations of a data point P from a given
(or fitted) line in the 2D case. Let us first emphasize on the MD potential of
the RR and then return to the important details about the use of the different
deviations further.

Figure 1b shows a possible 3D implementation of 5 deviations, presented in
Fig.1a. This may be useful for example in the problem for deriving the funda-
mental plane of elliptical or spiral galaxies. Let consider the mass parameter
of the galaxy (velocity dispersion or HI line width, respectively) associated
with Z-axis and let assume that it is known with high accuracy. Let consider
also that the galaxy luminosity (e.g. X-axis) and galaxy size (e.g. Y-axis) are
known with significant errors. This is a non-OLS situation, because the ”in-
dependent“ variables (X and Y) are subjected to errors, but the ”dependent“
variable (Z) is considered free of errors. However, applying the RR method we
may use obligatory the plane BCZi, parallel to the plane OXY and passing
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Ôèã. 1. (a) Five methods for measuring the deviation of the current point P from the checked
line: 1 - vertical, 2 - horizontal, 3 - orthogonal, 4 - diagonal and 5 - geometric mean (the
bisectoral (6) and average (7) deviations are not shown); (b) Possible application of different
deviations in a 3D non-OLS situation where X and Y data have significant errors, but Z
data are known with high accuracy (see the text).

through the current point P (Fig.1b). Since the error of Z data is negligible,
the deviation R from the examined plane ABCD must be measured as devi-
ation from the line BC, in the plane BCZi. Thus any type of deviation, as in
Fig.1a., may be used. Generally, different types of deviations including ∆z may
be used easy for RR in the 3D case, depending on the additional information
about the errors in X, Y and Z directions.

However, the concrete value of slope of the fitted line depends on the used
physical units of X and Y data.

Let turn back to Fig.1a and define seven kind of deviations. Fig.1a shows
a XY plot of a line Y = AX + B (with slope A = 4), one current point P
and five segments that illustrate five methods for measuring of the deviations
of this point from the line. The vertical distance ∆y (1) and the horizontal
distance ∆x (2) are attributes of the direct (Y—X) and reverse (X—Y) OLS
regressions. Let present the deviations by two methods: through ∆y and ∆x,
as well as through ∆y only, in the form R = Q.∆y, where Q is a coefficient
depending on A. Therefore, we have R = ∆y with Q = 1 for (1), and R =
∆x = ∆y/A with Q = 1/A for (2). The orthogonal deviation (3) (introduced
by the statistician K. Pearson in 1901) is measuring vertically to the line, i.e.
R = ∆x∆y/(∆x2 + ∆y2)1/2 with Q = 1/(A2 + 1)1/2. The diagonal deviation
(4), proportional to quadratic mean, is R = 0.5(∆x2 + ∆y2)1/2 with Q =
0.5(1/|A| + 1)1/2. The geometric mean (5), R = (|∆x|.|∆y|)1/2, with Q =
1/(|A|)1/2, is introduced by the astronomer G. Stromberg in 1940 as ”impartial
deviation“, and independently by the statisticians Kermasck & Haldane in
1950 as ”reduced major-axis deviation“ (see IFAB90). The harmonic mean (6)
(1/R = 1/∆x + 1/∆y, not shown in Fig.1a), that is the length of the bisector
of the segments ∆x and ∆y, is R = (∆x+∆y)/(∆x∆y) with Q = 1/(|A|+1).
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The arithmetic mean (7) or the average (also not shown in Fig.1a), is R =
0.5(∆x + ∆y) with Q = 0.5/(|A|+ 1).

In the case of the 2D RR, when the assumptions of the OLS are strongly
violated, every chosen type of deviation among (1) - (7) can be applied to
measure the goodness of the tested pattern of line. Therefore, the dependence
of the used deviation R on the slope A of the tested line is of interest. It is
clear that when the slope of the line is close to unit, the deviations (3) - (7)
tend to coincide. However, when the slope of the line is A À 1 (or A ¿ 1)
the deviations (3) and (6) tend to be proportional to ∆x (or ∆y) and the
deviations (4) and (7) tend to be proportional ∆y (or ∆x).

Ôèã. 2. Behavior of the deviations in respect to ∆y, expressed by a Q coefficient, when
the slope A of the tested line changes. The ordinary deviations ∆y with Q = 1, and ∆x =
∆y/A with Q = 1/A are presented by dashed lines. The geometric mean deviation R =

(|∆x|.|∆y|)1/2 = ∆y/|A|1/2 with Q = 1/|A|1/2 is presented by the a solid diagonal line. The
behaviors of other types of deviation, presented by solid or dashed curves, are noted in the
plot.

These effects are illustrated in Fig.2 as dependences of the coefficients Q
(defined above) on the slope A of the tested line. The Q coefficients for the
deviation (3), (4), (6) and (7) have nonlinear behavior, i.e. the measuring
method works non-equally with different slopes A. From this point of view
Fig. 2 shows that in the case of the geometric mean (5) (as well as in the
simplest cases (1) and (2)) the measuring method seems to work equally with
different slopes A. So, the geometric mean (5) seems to play a special role
among the deviations 3-7 and may be preferable for the RR.

Looking on the examples of IFAB90 and FB92 we can add also, that the
OLS regression line, based on the geometric mean deviation (5), practically
coincides with the bisector of (Y—X) and (X—Y). The experience from the
preparation of the presented here examples supports strongly this conclusion
for the practice of the RRs, too. Therefore, since the RR method is time con-
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suming, but following the recommendations of IFAB90 and FB92 we seek the
bisector line, we can fit the bisector well using the geometrical mean deviation
(5). Note that in the MD case with P > 2 dimensions the concept of the bisec-
tor is not clear, but the geometric mean value has reasonable generalization:
R = (∆x1∆x2. . . . .∆xP )1/P .

From the RR point of view additional details about the deviations must be
elucidated. Let note that using the deviations (3) - (7) the OLS regression does
not change when X changes Y. Also, in the case (1), (2) or (5) the deviation
and the regression slope depend equivariantly (reasonably) on linear transform
of the X or/and Y data. However, in the cases (3), (4), (6) or (7) this quality
of the regression is absent, because the heel of the deviation onto the tested
line changes non equivariantly in respect to the surrounding data points. From
this point of view the deviation (5) seems to be preferable again.

Note also, that the different deviations may be used in the RR for exam-
ination of available lines under different limitations. The deviation ∆y (1) is
not defined in the case of vertical line pattern and ∆x (2) - in the case of
horizontal line pattern. The deviations (4), (5) and (7) are not defined in both
cases. However, the orthogonal (3) and bisectoral (6) deviations have limiting
values R in both cases: for (3) it is the distance R to the vertical or horizontal
line and for (6) it is the same distance, but multiplied by 21/2.

Figure 2 suggests that the geometric mean seems to be the preferable de-
viation. However, in the next section we will show that when the assumptions
of the OLS method are violated the orthogonal deviation must be preferable
both for OLS and RRs.

2 What should be the preferable deviation in the
astronomical OLS and robust regressions?

The considerations in Sec.1 forced us to turn back toward the OLS regression
in 2D case. It is known that the direct and reverse OLS regressions have
different slopes and the reverse regression is always steeper. We will look on
the influence of the configuration of the data points on the bias of the OLS
regression. Let us concentrate on the widely known and many times cited
recommendations of IFAB90 and FB92.

The authors of the papers IFAB90 and FB92 investigated and commented
the OLS use of deviations (1), (2), (3), (5), the bisector of the OLS regressions
(Y—X) and (X—Y), and the arithmetic mean of the slopes of the OLS regres-
sions (Y—X) and (X—Y). The last two types of deviations are not considered
in this work because they can not be expressed explicitly, i.e. they are useless
for the RR. Important related problems in the 2D case, such as formulas for
estimations of the slope, the slope error and regression error are solved and
discussed by IFAB90 and FB92 too.

We will regard two conclusions of these authors about the 2D regression, as
follows. (i) The bisector of the OLS regressions (Y—X) and (X—Y) is recom-
mended as the superior solution in the complicated cases; (ii) The orthogonal
regression, based on the deviation (3) is not recommended, because (ii-a) in
the numerical simulations its behavior is unstable and (ii-b) it is significantly
biased from the bisector. However, is the bisector a naturally good idea in
the 2D case? Why cannot the orthogonal regression be recommended? Note
that the formula for the slope of the orthogonal regression coincides with the
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expression giving the slope of the major axis of the ellipsoid of the data. This
expression is introduced from mechanics into statistics through the method of
the moments by K. Pearson. The key solving the problem is the influence of
the configuration of the data points onto the bias of the regression slope, as
can be seen in Fig.3.

Remember that when we approximate an elliptical 2D distribution of the
experimental points within expected regression slope A À 1 the direct regres-
sion was biased to the horizontal line strongly and the reverse regression was
biased to the vertical line weakly. When A ¿ 1 the situation reverses. Can
both OLS regressions coincide? The answer is no. Even in the case A = 1
both regressions will have smallest biases (with asymptotically equal absolute
values and opposite directions).

Figure 3a shows an expected line regression Y = L(X) with slope A = 2
and two rhomboids around it. If the observational data have ”good“ distribu-
tion in the solid line rhomboid (including sharp vertical bounds and enough
populated upper and down corners) the direct OLS regression will reproduce
L(X) well. In such a situation the orthogonal OLS regression will be biased to-
ward the vertical line (see below). However, if the corners are empty, the direct
regression will be biased (stronger with increasing of A) toward the horizontal
line. For reproducing the dependence L(X) by the reverse OLS regression, the
dashed line rhomboid must be ”well“ populated, including its corners. In such
a situation the orthogonal OLS regression will be biased toward the horizontal
line (see below). If the corners of the dashed line rhomboid are empty, the
reverse OLS regression will be biased (weaker with increasing of A) toward
the vertical line. It is also clear that when all 4 corners are populated, or when
all 4 corners are not populated, the direct and reverse OLS regression will be
biased unavoidably, and in different ways, depending on A. Because of this
the bisector of the direct and reverse regression will be biased in different way
too. Therefore, the bisector regression could be recommendable only in the
rare case of A = 1. Obviously, in the general case the bisector of the direct
and reverse OLS regressions is not a good idea. - protivno na zakl. v prednija
section

Figure 3b shows that in the general case, when the above mentioned ”cor-
ners“ in the point distribution are empty, the orthogonal regression seems to
be superior. Let consider this problem from a slightly different point of view.

The most frequent situation is approximately elliptical distribution of the
data points, as it is shown in Fig.3b, with some ”main sequence“. It is natural
to suppose that the major axis of the ellipse must represent the expected
dependence L(X) in the best way. Note that the edge population of the ellipse
applies strong and different leverage action on the direct and reverse OLS
regression lines. The larger part of the segment AB lies below the line L(X)
and pulls the right edge of the direct regression (solid line) down toward the
horizontal line. The opposite (down-left) part of the ellipse pulls up the left
edge of the direct regression. Simultaneously, since A > 1 the reverse regression
is less rotated. Not so large part of the segment CD lies to the left from L(X)
and pulls weakly the reverse regression toward the vertical line. In case of
A < 1 the situation changes. The direct regression will be biased weakly, but
the inverse regression will be biased strongly. It is clear again, that generally
the bisector of the direct and reverse lines is not a good idea.

From this point of view it is obvious that the major axis of the elliptical
distribution will be reproduced in the best way by regression, based on the
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Ôèã. 3. On the reproducing of an expected dependence Y = L(X) with A = 2 and different
distribution of the observation points. a) The solid line rhomboid presents the distribution
of the observations needed for reproducing the true (unbiased) dependence with the direct
OLS regression. The dashed line rhomboid shows the spread of the observations needed for
deriving the unbiased reverse OLS regression. b) The ellipse shows an usual point distribution
around the expected dependence when the orthogonal OLS regression (short dashed line)
may be recommended as superior, independently on the slope value. The solid and long
dashed lines show the distinctly biased direct and reverse OLS regressions.

orthogonal deviations, independently of the slope A. Note that in Fig.3b the
line L(X) passes always through the middle point of the segment AE (vertical
to the line L(X)) and all such segments. Therefore, when don’t have additional
useful information, the orthogonal regression should be clearly preferable.

Figure 3b also shows, that when A > 1 the orthogonal regression will lie
close to the reverse regression, and if A < 1, on the contrary, close to the direct
regression. The same conclusion can be drown from Fig. 2. The examples in
the papers IFAB90 (Fig.2, with A ≈ 3.5) and FB92 (Fig.1, with A ≈ 0.5)
give an independent confirmation of this conclusion. So, the problem with the
strong and widely cited recommendations of IFAB90 and FB92 (i) and (ii),
marked in the beginning of this Section 2 is, we think, that these authors did
not consider or simulate regressions with A À 1 or A ¿ 1.

Let introduce here the example in FB92 about the Hubble diagram. These
authors give explicit recommendations, as follows. If we are looking for best
estimate of H0, defined by Hubble’s law V = H0D + V0, where the entire
scatter arises in the velocities V and none in the distances D, we must cal-
culate OLS (V—D) regression. If we are looking for the best estimate of the
age of the universe, which is proportional to 1/H0, we must calculate OLS
(D—V) regression. If we are seeking the best estimate of some ”structural“
relationship between velocity and distance, making no judgement on whether
velocity depends on distance or vice versa, we must derive the bisector of the
OLS (V—D) and (D—V) regressions.

However, the considerations in this Section 2 give other recommendations,
including for the case of the Hubble’s diagram, as follows. If we can bound the
distribution of the observation point to have ’good’ distribution in a rhomboid,
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as in Fig.3a, we must apply OLS regression, If we have the general case with
elliptical distribution of the observation points, we must apply orthogonal
regression. Generally, the bisector of the direct and reverse OLS regressions
may be recommendable only if the expected regression slope is close to unity.
These recommendations are valid for the RRs too.

3 General presentation of the robust 1D location estimators
and the robust 2D regression

The ”least trimmed squares“ (LTS) estimator is introduced by Rousseeuw
(1984). The predecessor of this method is the ”least median of squares“ (LMS)
estimator, proposed by Hampel (1975) and developed by Rousseeuw (1984).
These methods are widely discussed in RL87 and the conclusion is that the
LTS estimator is superior (Fig.4). Though, the examples in RL87 are based
on the LMS method and here we carry out comparisons of both methods. The
LMS and LTS are in principle 1D scatter estimators and the RR, described
here, is a superstructure over LMS or LTS. The main advantage of this RR
is that the fit covers the most populated part of the distribution of the data,
independently on the deviations of strong outliers.

Let underline the features of the ”standard“ OLS estimator. The principle
of the OLS estimator, introduced by Legendre and Gauss in the beginning of
19th century, involves minimization of the sum of the squares R2

I of all devi-
ations from the searched point, or line, or plane etc. The application of this
principle in the 1D case leads to an estimation of the constant of the distri-
bution (mean, center, location) through the arithmetic mean (average) value
of all data. So, in principle the OLS is a 1D scatter estimator and any OLS
regression is a superstructure over it. In 2D, 3D, 4D, etc. cases the regression
analysis based on the OLS principle leads to a system of linear equations,
which solution gives the expressions for coefficient estimations for line, plane,
hyperplane, etc.

The principle of the LMS estimator involves minimization of the median of
the ordered squares of the deviations R2

K (Hampel 1975). The right tail of this
order may contain very large deviations, but LMS ignores them (Fig.4b). This
method is a reasonable generalization of the idea of the simple 1D median.
The LMS derives the median value RM = C ′C”RH as a robust measure of
the scatter of the deviations. Conventionally, H = N/2+1 is the ”half“ of the
point number. Here C ′ is a coefficient used for consistency with the standard
error of the Gaussian distribution. Since the half of the Gaussian distribution
is bound by ±0.6745σ, the LMS coefficient is C ′ = 1/0.6745 = 1.4826. The
other coefficient is a finite-sample correction factor. From numerical simula-
tions LR87 recommend C − 1 + 5/(N − P ), where P is the dimensionality.

The principle of LTS estimator involves minimization of the sum of H
trimmed squares of residuals R2

K , and more specifically - the sum of the left-
hand half of the ordered squares of the residuals (Rousseeuw 1984). The rest
(i.e. the right-hand part of the ordered sequence of squares) may contain very
large deviations, but is ignored entirely (see Fig.4c). The LTS estimates the
standard error of the scatter as RT = C ′.C”(

∑
R2

K)/(H −P ))1/2. In this case
the consistency with the Gaussian error distribution is achieved by means of
the coefficient C ′ = 2. The factor C” is the same as in the LMS case (see
above). The value of RT can be computed also with use of weighs of the data.
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Ôèã. 4. (a) An example of nine points, the OLS regression through these points (dashed
line), a currently tested line, defined by the edge points of the sample (solid line) and one
∆y deviation from the tested line. Cases (b) and (c) show examples of ordered squares of
deviations from tested lines where the median value (marked with rhombs) in both cases is
4, but the sum of the trimmed squares is 9 in (b) and 7 in (c). The LMS cannot distinguish
the cases (b) and (c), but LTS will choose (c).

Since the principle of the RR (based on LTS or LMS) is significantly dif-
ferent from the principle of the OLS regression, the RR solution cannot be
computed by simple expressions. that is why the RR method involves qual-
ifying each available pattern of solution - each point in 1D case, each pair
of points in 2D case (defining line), each triad of points in 3D case (defin-
ing plane), etc. The method of qualifying is LTS (or LMS) estimation of the
scatter of the deviations and the result is the pattern with shortest system of
deviations. This is the 1st (main) approximation to the RR solution.

Figure 4 is an illustration of the application of LMS and LTS estimators.
Figure 4a shows a line that is currently tested (solid line) and one ∆y deviation
from it. Figures 4b and 4c show examples of ordered sequences of squares
of deviations from different tested lines. The deviations with zero value are
double, because they correspond to the points defining the tested line. The
cases (b) and (c) have equal LMS scatter estimations (R2

5 = 4 in both cases)
but different LTS estimations (the sums of the trimmed squares are 9 in (b),
but 7 in (c).) So, the LTS recognizes surely that in case (c) the tested line
belongs to more concentrated region of the data points and by this reason it
is better that the line tested in case (b).

Generally, the 1st approximation of the RR as rough. It is possible also the
existence of a hole in the point distribution just in its most populated part.
Then the 2nd (final) approximation is obtained by removal of the outliers
with respect to the 1st approximation (typically with deviations more than
2.5σ, RL87) and applying of the OLS on the remaining ”good“ points. By this
way the 2nd approximation gives the standard errors of the regression and
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its coefficients. However, the RR allows various methods for measuring of the
deviations (see Sec.1), for which the direct OLS solution may be very difficult
or impossible. Therefore the 2nd approximation must be also of LTS type.
The idea for the proposed here 2nd approximation comes from two historical
robust estimators, described in Sec. 4.

A method for the 2nd (final) RR approximation, using again the LTS
estimator, is proposed here for the first time (as the author believes). It is based
on addition of patterns, produced as averages or bisectors from the pairwised
best old patterns. Since the LTS is a natural qualifier of the patterns, numerous
best patterns can be extracted instead of only one, the superior pattern. The
extracted patterns can be used for enrichment of the region of the solution
with new, possible better patterns. In 1D case the enrichment is based on
addition of the averages of all pairs of the best points (Fig.5c). In the 2D, 3D
etc. cases the enrichment involves addition of bisectors of all pairs of the best
lines, bisectors of planes, etc. The added patterns can be tested again by the
LTS and a new best pattern (if such is found) can be derived as the 2nd (final)
RR approximation.

The recommended here number of extracted best patterns is N1/2 + 1, or
typically between 10 and 20. Then the number of the additional pairwized pat-
terns will be between 10.9/2=45 and 20.19/2=190. The number of pairwised
combinations of these additional patterns is negligible in comparison with the
number of the original patterns in 2D and 3D cases (pairs of points, triads of
points etc.). The computing time increases by a few percents, but the inner
accuracy of the RR solution increases 3-5 times (see Fig.4 and Fig.6).

In principle the RR method does not give estimation of the slope error.
The extraction of numerous best patterns allows also an empirical approach
to slope error estimation. It is introduced here for the first time (as the author
believes). This approach is based on ordering of the best patterns (from 1st
approximation only) by their LTS scatter and producing of ”error growth
curves“ for the coefficients. Each such curve contains the standard error of the
coefficients, derived from 2, 3, 4, etc. best patterns. In the 2D case the value
of the error curve, corresponding to the best N1/2 + 1 patterns occurs usually
very close to the OLS slope error estimation (after removal of outliers). An
example is shown for the last case in Fig.9 and Fig.10.

4 The measure of the robustness of the estimator and a
comparison of five 1D estimators

Generally, the LTS is an 1D estimator. By this reason its character and its
superiority among other such estimators in the 1D case is important.

Figure 5a shows an XY plot with four ”good“ points (1-4), situated ap-
proximately along a lin. One ”bad“ point or strong outlier (5) is situated in
the right-down corner of the plot. The direct and reverse OLS regressions for
all points are plotted with short dashed lines. Because of the outlier the OLS
lines become strongly deviated from the dependence, hinted by the four good
points. The influence of the outlier is stronger on the direct regression, because
it lies out of the range of the good points more in X than in Y direction. In
the case of a direct OLS regression this outlier cannot be recognized by sim-
ple check of the residual deviations because the good points (1) and (4) are
situated farther from the line than point (5).
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Ôèã. 5. (a) A simple example of five experimental points including one strong outlier (5).
The short- dashed lines show the OLS direct (shallower) and reverse (steeper) regressions
over all 5 points. The long-dashed line and the solid line present the robust regressions
in 1st and 2nd approximation, respectively. The asterisks show the points defining the 1st
approximation. (b) Example of 1D distribution of 10 points, corresponding to the slopes
of the lines through all pairs of points in (a). Five estimations of the mean value of this
distribution are shown with ”standard’ error bars (from left to right): average, median, as
well as the 1st approximation of the LMS, LTS and Shorth estimators. The estimation from
LMS and LTS coincide (LTS has smaller error bar). (c) Large-scale plot of the region of the
most concentrated 4 points in (a). Six new points (marked by rhombs) are added as averages
of each pairs of the four points (dots). The 2nd approximations within the methods LMS,
LTS and Shorth are shown again with error bars, as in (b).

In Fig.5a the 1st and 2nd approximations of the robust regression, derived
by the LTS method (Sec.3), are plotted with dashed and solid lines, respec-
tively. In this example the 1st approximation with the LTS or LMS estimators
(within all types of deviations, presented in Sec. 2) recognizes the line through
the pair of edge points (1,4) as the best fit. The 2nd approximation differs
form the 1st approximation only negligibly. After removing the point (5), the
direct and reverse OLS regression over points (1-4) practically coincide with
the 2nd approximation of the RR.

Figure 5b shows the slopes of all 10 patterns of lines, passing through the
pairwised 5 points in Fig.5a, as example of an 1D random variable. This sample
will be used (i) for introducing of a parameter that measures the robustness
of scatter estimator, (ii) for comparison of five estimators in 1D case and (iii)
for 1D illustration of the introduced in this paper (Sec.3) 2nd approximation
of the RR method (Fig. 5c).

Figure 5b shows 5 estimations of the mean value of the random variable
(or of the ”best“ regression slope): average, median, 1st approximation of the
methods LMS and LTS, as well as the method ”Shorth“ (see below). The
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vertical segments are the corresponding error bars. Note that in respect to
Fig.4b and 4c, illustrating the work of LMS and LTS as scatter estimators,
the purpose of Fig.5b and 5c is illustration of LMS and LTS as estimatiors of
the mean value of an 1D distribution.

The most populated part of the distribution, located in the right part of
Fig.5b, contains 6 points. These points correspond to the slopes of the lines
passing through the 4 ”good”points in Fig.5a. The slopes of the other 4 lines,
passing through the ”bad”point (5) are located in the left part of the plot as
outliers.

In Fig. 5b the median lies between the points (5) and (6), because the
number of points, ten, is even. The LMS and LTS methods regard each point
as a possible solution (mean value). For each point they compute the squares of
the deviations of the other points from it and find the point with the shortest
system of deviations as result. In 1st approximation LMS and LTS find as
superior the point (7), placed in the most populated part of the distribution.
Thus LMS and LTS methods estimate the mode value of the distribution.
From this point of view the simple median is worse estimator, because its
value is relatively far from the mode value.

In Fig. 5c the most populated part of the distribution, containing 4 original
points and the 2nd approximations of the methods LMS, LTS and Shorth (see
below), are shown in large scale. These 4 original points are used for producing
of 4x3/2=6 new points, which are averages of the pairwised combinations of
the original points. In the 2nd approximation LMS does not find better pattern
but LTS does. It is one additional point, lying between points (7) and (8). Here
the concentration of the patterns that can be examined as solutions is about
twice as large. If 6 most concentrated points were usedfor duch purpose, the
number of the additional patterns would be 6x5/2=15 and the solution would
be about 3 times more accurate. The right-most bar in Fig. 5c shows the result
of the 2nd approximation of the method Shorth (see bellow). So, the methods
LTS and Shorth find surely the mode of the 1D random distribution, shown in
Fig. 5b, giving also a robust estimation of the best regression slope for Fig. 5a.
However, this approach to find the best regression slope is not good, because
(i) it estimates the slope independently on the intercept and because (ii) it
cannot be generalized for MD cases.

Let us introduce a robustness parameter. A conventional measure of the
robustness of an estimator against strong outliers is the so-called ”breakdown
value“. It is the proportion (or fraction) of contamination of ”bad“ data that
the method can withstand and still maintain its robustness (RL87).

From this point of view the median value is extremely stable. In Fig.5b the
median belongs to the most concentrated part of the distribution, containing
6 (or 50%+1) points. If we take 1 point from the left part of the distribution
and place it very far (to the left or to the right) the median will change weakly
and will remain in the most concentrated part of the distribution. However,
if we take a point from the right of the median and place it to the left of the
range of the points, the median will jump significantly to the left. Then the
fraction of the points in the most concentrated right part of the distribution
becomes 50%. Therefore, for large N the asymptotic robustness of the median
estimator is 0.5 or 50% of all points. The robustness should be not larger than
0.5, because then the ”good“ part of data should be not easily defined.

In Fig. 5b the average value (i.e. the OLS estimation) is the most affected
by the outliers and it lies out of the most populated region of the distribution.
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It is easy to see that only one distant enough outlier may ”breakdown“ the
average value arbitrarily, even within great number N of the observed points.
Therefore, the robustness (or the breakdown value) of the OLS estimator, 1/N,
tends asymptotically to 0 when N increases to infinity. By the same reason the
robustness of the OLS regression is also 0.

Let us show that the robustness parameter can have an intermediate value,
such as 29%.

There are two non-OLS estimators, published about 50 years ago, and
based on the median estimator. (i) An old method for robust estimation of
1D location is based on the median of all pairwise means in the sample of N
points (RL87, p.164). The same method can be applied in the problem of MD
location (e.g. for 2D or 3D centering of stellar systems). (ii) The first non-OLS
robust regression estimator for N points in 2D case is the ”median of lines“,
defined by pairwised points. The coefficients of the best line are derived as
medians of the corresponding coefficients of all used lines (RL87, p.67). The
median value in Fig. 5b illustrates just this case. So, in (i) and (ii) the simple
median estimation is used. Let us estimate the robustness of this method, but
from the point of view considering the number of the original data points. The
number of the pairs of points, i.e. the combinations of points in both cases
is NC = N(N − 1)/2. If the number of outliers is K, the condition for 0.5
robustness can be written as (N −K)(N −K − 1)/2 > 0.5N(N − 1)/2. Then
for large N we derive K/N < 1− (1/2)1/2 ≈ 0.293 ≈ 29%.

The LMS and LTS methods, having 50% robustness, contain reasonable
generalization of the ”median idea”of the above mentioned methods (i) and
(ii),the LMS and LTS methods derive the regression coefficients simultane-
ously. The idea for the creation of new patterns for the proposed here 2nd
approximation of the RR (Sec.3) comes also from these two historical exam-
ples.

Now let compare the five estimators of 1D location, shown in Fig. 5b.
The estimator ”average“ (with zero asymptotic robustness) can be consid-

ered as direct product of the OLS principle. It has well known generalizations
for MD location (averages by all axes or directions) and MD regression (so-
lution of system of linear equations). The standard errors of the regression
and the slope(s) are also well defined and easily computed. However, IFAB90
claimed that the standard formulas for these errors are not entirely correct
and proposed more accurate formulas in the 2D case.

The estimator ”median“ (with 50% asymptotic robustness) is introduced
by Laplace in the middle of 19th century(RL87). This ”heuristic“ method
belongs to the so-called ”range statistics“, whose properties are very difficult
to be investigated analytically. Conventionally, the ”standard error“ of the
median estimation is defined again by a median. It is the median of the absolute
values of all deviations from the median estimation of the mean value (or
square root of the median of the squares of these deviations), multiplied by
1.4826 (see Sec.3).

The full generalization of the median method for MD regression with ro-
bustness of 50% is given by Siegel (1982). In the 2D case with N points the
derivation of the line coefficients A and B becomes independent, as follows. In
the first stage each point (e.g. point I) is fixed and pairwised with every other
point J and the median, e.g. AI , is derived. In the second stage the median
of all such N medians is deriving as a final solution (RL87, p.15). Thus the
number of checked combinations in 2D or 3D cases are respectively 4 or 18
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times more than in the methods LMS or LTS (but the check is significantly
simpler). Though, this method is not very attractive, because (i) the simple
median is not the best estimator (see Fig.5b), (ii) the coefficients are derived
independently and (iii) the computing time for this method is too long.

The LMS and LTS estimators have the highest robustness of slope estima-
tion and regression error estimation, asymptotically 50% (see the theorems in
RL87). The ”standard deviation“ of the LMS is computed just as in the case
of median estimator (see above). The use of squares of deviation instead of
absolute values of deviations allows avoid some peculiar situations discussed
in the theory, but this is not so important in the practice of LMS (RL87). The
standard errors of the LMS and LTS methods can be computed as it is shown
in Sec.3. In the examples regarded in the preparation of this work the standard
error of the LTS happens to be slightly smaller than the standard error of the
LTS. A special feature of the LMS is that its asymptotic efficiency (as for all
median based methods) is characterized with abnormal low convergence rate.
This rate is proportional to N1/3, while the same rate for the OLS and LTS
estimators is N1/2 (RL87). This is also not important in practice, however in
comparison with the LMS, the LTS estimator is better (see Figs. 4,5,6). The
MD generalizations of the methods LTS and LMS are natural.

Another special method with unknown origin, which can derive robustly
the mode of an 1D location is so-called ”Shorth“ method (RL87, p.164). It
is defined as arithmetic mean of the shortest subsample with half number
(H = N/2 + 1) in the ordered data. The standard deviation of the Shorth
estimator is computed in the examples here as the half size of this shortest
interval, multiplied by the coefficient C = C ′C”, as in the case of median
estimator (see above). The Shorth estimator is very alike to the LMS estimator,
however, the computations are more complicated and more time consuming
than for LMS or LTS. In a case of a distribution with strong asymmetry
the Shorth estimator may be applied twice, using the shortest interval, found
in the 1st approximation as a field for a new search, now for the shortest
interval, containing 1/4 of all data. Examples for 2nd approximation of Shorth
estimator are given in Figs. 5c, 6ab, and 7b.

Since the fast median smoothing is widely applied in the astronomical im-
age processing, the implementation of the Shorth method there is an attractive
possibility. The method of ”hard median filtering“ or ”mode filtering“, based
on the Shorth estimator, has been developed by the author (Georgiev 2002).
The mode filtering removes impulse noise from the image more efficiently than
the usual median filtering (i.e. with use of smaller filtering window), but it is
a few times slower.

The Shorth estimator is worth noting in the framework of the RRs, but it
has a remarkable generalization for the case of MD location. This generaliza-
tion can recognize the most populated ellipsoid among the data. The principle
is ”searching for the minimal volume ellipsoid covering (at least) the half of
the observing points“ (RL87, p.258). A direct application of this principle in-
volves giant computation time. However, Rousseeuw & Van Driessen (1999)
developed a fast method for computations, including even the next level of
generalization, called ”minimum covariance determinant estimator“.
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5 Examples

5.1 Atmosphere extinction mode of the clear Rozhen sky

Figure 6 shows an application of the five location estimators, discussed in
Sec.4. It presents with small dots the distribution of the atmosphere extinc-
tion in Rozhen NAO in the V band from 146 measurements (courtesy of Dinko
Dimitrov, 2007). Only 8 measurements have standard errors ¿ 0.02 mag. Fig-
ure 6a presents the results with data weights 1/146 and Fig.6b - with data
weights reciprocal to the errors of the observations. Filled squares present
the histograms, polynomially smoothed by 5 neighbours. In this example the
1D distribution of the data has a strong asymmetry - a small, well-defined
maximum plus long and a heavy right tail.

Ôèã. 6. Five estimations of the mean value (the location parameter) in the 1D case. Small
dots present 146 measurements of the atmosphere extinction in Rozhen NAO (Dimitrov,
2007). Filled squares present the histogram of the distribution. The shortest vertical segment
shows the position and the

”
standard error“”of the Shorth estimation. Other segments show

(from right to left) average, median, LMS and LTS estimations. The
”
error curves“ show

(from up to down) the behavior of the average, LMS and LTS estimators. (a) The individual
weights of the data are 1/146. (b) The weights of data points are reversely to their standard
errors.

The results from five applied estimators are shown with vertical segments,
proportional to the corresponding standard errors. From right to the left they
are average, median, LMS, LTS and Shorth. The mode region of this distri-
bution shows high data point concentration and only the 1st approximations
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of LMS, LTS and Shorth estimators are presented here. Note again, that the
simple median estimator should not be preferable.

This example is mainly for a demonstration of the error curves of the 1D
estimators. The error curve is the sequence of standard deviations when the
estimator ”scans“ and tests the ordered points, searching for the superior point
as estimation of the ”center“ of the distribution. The scanning mode is natural
way for applying the LTS or LMS estimators, while the average, median and
Shorth estimators give explicit results. Though, in Fig.6a,b the error curves
of the average estimator are especially computed and plotted for a illustration
(the highest and shallowest curves). The error curves of the LMS estimator,
based on the ordered squares of deviations (or on the ordered absolute values
of the deviations) from the tested point are the next curves, deeper and not
smooth. The error curves of the LTS estimator are the deepest. The error
curves of the Shorth estimator (not shown) are very close to the curves of
the LMS estimator. Note that the average estimation, as well as the simple
median estimation (derived just after ordering of the data) do not give a good
estimation of the mode value of the distribution, but LMS, LTS and Shorth
do. Note also, that the mode estimations with LTS correspond to well defined
minimums of relatively smooth error curves.

This application leads to a mode estimation of the Rozhen atmosphere ex-
tinction in the V band (for perfect atmosphere conditions) of 0.140±0.058 mag
in Fig.6a and 0.119±0.041 mag in Fig.6b. Since the use of the weight reversely
to the error estimation of the individual data is not especially established, we
recommend the first extinction estimation.

5.2 Fitting the main sequence of the Hertzsprung-Russell diagram

Here we show the applications of the LMS amd LTS regression methods in the
2D case, reproducing the remarkable example of RL87 (p.27).

Figure 7 shows the diagram of the effective temperature T and luminosity
L (in solar units) for 47 stars of the stellar association Cyg OB1. The purpose
here is to fit linearly the main sequence in a presence of evolved stars, which
introduce significant intrinsic scatter in the abscissa direction. After applying
the RR we find 7 such stars (14% of the data) as strong outliers.

Figure 7 shows that the difference between the slopes of direct and reverse
LMS RRs (a) is significantly larger than for LTS RRs in (b) (solid lines).
This is another evidence of the superiority of LTS over LMS. Therefore, the
LMS method can indeed be excluded from the applications. Also, since the
regression slope is A = 4−5, the orthogonal RRs (presented by solid lines and
edged by circles) in both cases practically coincide with the reverse RRs (∆x
based, or of type (2) in Sec. 2). The orthogonal RRs are also very close to the
reverse OLS regressions (the steepest long dashed lines), just in concordance
with the conclusions for the orthogonal regressions in Sec. 3. In both cases
in Fig. 8 the RR, based on the geometric mean deviation R = (∆x.∆y)1/2

(not shown) lies between the direct and the reverse RRs, being close again
to the reverse RR. The behavior of the orthogonal and geometric mean RRs
correspond well to the expectations from Fig. 2 in case of A > 1.

The solution of RL87 with the direct LMS RR, in 1st approximation, is Y =
3.90X−12.90. Our solution with the direct LMS RR, in 2nd approximation, is
Y (±0.43) = 3.94(±0.61)X − 12.60(±2.78) and with the orthogonal LMS RR
in 2nd approximation is Y (±0.48) = 5.08(±0.75)X−12.60(±3.30). (The value
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Ôèã. 7. An application of the RRs for a linear fit of the main sequence on a Hertzsprung-
Russell diagram of the stellar association CYG OB1 (data from RL87). Small dots present
47 stars. Short-dashed lines in (a) present the direct and reverse OLS regressions, which
are not meaningful here. The solid lines present the direct and reverse RRs based on LMS
in (a) and on LTS in (b). The solid lines with circled edges present the orthogonal RRs.
Circled dots present 7 outliers, found as deviating more than 2.5 sigma form the orthogonal
RRs. The long dashed lines present the direct and reverse OLS regression, found after the
removal of outliers. The asterisks show ”the best”5 points, used for 2nd approximation of
the methods. The solid line that is edged by rhombs in (a) is our direct LMS RR, coinciding
with the unique solution of the problem, given in RL87 (only this RR is presented in RL87).
For a better distinction of the LTS RRs the case (b) is plotted with rescaled abscissa.

just after Y corresponds to the standard error of the regression estimation of
Y).

Our recommended fit, derived with orthogonal LTS RR with 2nd approx-
imation, is Y (±0.41) = 5.14(±0.29)X − 17.61(±1.29). The coefficient error
estimations are carried out on the base of cumulative error curves, as in the
next example, and since here N1/2 + 1 = 7, the errors correspond to the 7th
position of the error curves (see Fig.8).

Figure 8 illustrates the empirical approach to coefficient error estimation,
proposed in this work, because the RR do not originally have such a possibility.
This approach is based on cumulative curves of the averages and corrsponding
standard deviations of the coefficients A and B, derived on the trimmed best
patterns.

The abscissa of Fig. 8 is the number of the pattern between 2 and 66,
where the patterns are ranged by their LTS scatters. The fluctuating lines in
(a) and (b) show the behaviour of the coefficients A and B and the smooth
curves show the behaviour of the cumulative mean values of the coefficients.
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Ôèã. 8. The behaviour of the estimated value (fluctuating curve) and the cumulative average
(smooth curve) of the coefficients A (a), B (b), as well as the cumulative functions of their
standard deviations (c) versus the number of the trimmed best pattern for the example,
shown in Fig.7. The vertical line shows the position of the pattern No.12 used here for
estimations of the coefficient errors.

The value above the K-th pattern corresponds to the average value of the
coefficient, derived from the patterns with numbers 1 - K. Fig.8c shows the
behaviour of the cumulative curves of the standard deviations of the average
values of the coefficients. The vertical line shows the pattern with number
N1/2 + 1 = 12 (here N=131) which is proposed to be used for estimation of
the coefficient errors.

The proposed method for coefficient error estimation is not connected with
any statistical assumptions and therefore it cannot be universal. However, in
many similar cases, e.g. many color-magnitude diagrams, it could be used as
an additional tool for comparing the results.

5.3 Fitting the main sequence of a color-magnitude diagram

Figure 1 concerns V magnitudes and (B-V) colour indeces of N=331 bright
stars in the field of the open star cluster NGC 2266 (courtesy Maciejewski
2007). It is known that the fit of the main sequence in such a CMD difficult
task (see the survey of Maciejewski & Niedzielski 2007), but this is an good
example for illustration of the strength of the RR.

In the regarded example of CMD background stars and evolved stars in-
troduce significant intrinsic scatter, mainly in the X direction of the CMD.
Observing errors both in X and Y data exist too, but they can be consider
negligible in respect to the X intrinsic scatter. By these reasons the reverse
RR based on minimization of the horizontal deviations (∆x), is appropriated
as the adequate model here.
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Ôèã. 9. An application of the RRs for nonlinear fits of the main sequence on a CMD with
LTS based RRs (data of Maciejewsky, 2007). The dashed and solid curves represent the
results after previous square root or logarithmic transform of X-data. Circled dots present
62 outliers, found as deviating more than 2.5 sigma form the solid line.

The purpose here is deriving the 2D reverse (minimizing ∆x) RRs of the
type Y = AX + B. Here Y is V-magnitude, X is colour-indexes, A is re-
gression slope and B is regression intercept. We apply previously square root
or logarithmic transform of X data. THese transforms may be presentet as
(B − V ) = αV 2 + βV + γ or (B − V ) = α.10β.V . The results are shown in
Fig.9 by dashed or solid line, respectively.

6 Concluding remarks

The presented examples show that the RR method, based on the LTS, is a
powerful tool for fit a empirical dependences with large numbers of outliers.
The results of the present work gives evidences, that when the usual statistical
assumptions are strongly violated the LTS of the orthogonal deviations should
be the best choice.

The RR method is in principle computer time consuming. The number of
the tested patterns (combinations of pairs, triads etc of points) NC in MD
case is given by the Newtonian binomial coefficients: NC = N in 1D case,
NC = N(N − 1)/2 in 2D case, NC = N(N − 1)(N − 2)/6 in 3D case etc. Since
NC is proportional to NP , where P is the dimensionality, the number of tested
patterns might be too large. If N = 100. in 2D case NC ≈ 5000, if N = 1000
NC ≈ 500000.
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The simplest algorithm of the LTS method in 1-st approximation, appli-
cable for deriving a RR line in 2D space, can be presented as follows.

Suppose that we are searching for the regression line Y = AX +B through
N data points (xi, yi). We test the lines passing through all pairs of points
as patterns of possible solution (fit). For every such line we derive and order
the squares of the deviations of the points from the line. Then we find the
median of the ordered squares of deviations (the value of the deviation No.
H, where H = N/2 + 1), as well as the (eventually weighted) sum of the
trimmed squares of the deviation (from 1 to H). We choose the line with the
smallest sum of trimmed squares as the best one. We can multiply this sum
with suitable coefficient to get a result compatible with the Gaussian standard
error. In a 3D case, in a search for a plane Z = AX + BY + C, we apply the
same procedure, using the planes passing through all triads of points as tested
patterns.

The 2nd approximation of the fit, if need, can be envisaged in the above
mentioned algorithm and numerous best lines (or planes), typically about
20, can be extracted instead of only one, the superior. The bisectors of the
extracted lines (or planes) can be tested in the same way in a search for a better
fit. More information about the 2nd approximation and error estimation will
be given in the future (Georgiev 2008).

In the end, let compare the OLS and RR methods. The features of both
methods are collected in Table 1.

Òàáëèöà 1. A parallel between the features of the OLS and RR methods

Particularity OLS regression LTS robust regression

Purpose Fitting with objective Fitting with obvious
(proved) validity (subjective) validity

Demands about data Absence of outliers Presence of ”main sequence”
Demands about errors Normal distribution etc. None
Principle Minimizing the sum of Minimizing the sum of

all squares of deviations the trimmed squares of deviations
Method Applying of OLS formulas Testing available patterns by LTS
Tool Using ∆y deviation Using many kinds of deviation
Outlier detection In some cases, not surely In all cases,robustly
Robustness Asymptotically 0 (min.) Asymptotically 0.5 (max.) (Sec.4)
Internal accuracy Originally high Originally low. Possible increasing:

Adding intermediate patterns (Sec.3)
Slope error estimation Applying OLS formula Originally none. Possible solution:

Cumulative error curve (Sec.3)
MD generalization By default By default
Polynomial applying By default In some cases (to be elucidated)
Computing time ∝ N ∝ N4
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