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Structure Formation in the Universe
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15.1 The Linear Growth of Structure

We begin by writing down the equations of hydrodynamics in an expanding universe
(the equation of continuity, Euler’s equation and Poisson’s equation, respectively)

∂%

∂t
+ ∇x ·

(
%v
)

= 0

∂v

∂t
+
(
v · ∇x

)
v = −1

%
∇xp − ∇xΦ

∇2
x Φ = 4πG% − Λ

(15.1)

% (x, t): density
v (x, t): velocity field
p (x, t): pressure
Φ (x, t): gravitational potential
Λ: cosmological constant

In the following we will neglect the cosmological constant.
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Now we will consider small perturbations around the homogeneous solution. The
density perturbation is usually written in terms of the density contrast

% (x, t) ≡ %̄ (t)
(

1 + δ (x, t)
)

(15.2)

Furthermore, we will change to co-moving coordinates using x = R(t)r. Then the
velocity field can be written as

v = Ṙr + Rṙ ≡ Ṙr + u (15.3)

where Ṙr is the uniform Hubble flow, u is the peculiar velocity field.

The gravitational potential can be written as

Φ = Φ0 + φ (15.4)

with the unperturbed potential Φ0 and its perturbation φ.
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Then the fluid equations (15.1) can be written as

∂δ

∂t
+

1

R
∇r · u +

1

R
∇r ·

(
δu
)

= 0

∂u

∂t
+

1

R

(
u · ∇r

)
u +

Ṙ

R
u = − 1

R

1

%
∇r p −

1

R
∇r φ

∇2
r φ = 4 π GR2 %̄ δ

(15.5)

where δ, u, and φ are functions of the co-moving coordinate r now. Neglecting terms
of second order in the perturbed variables simplifies the set of equations:

∂δ

∂t
+

1

R
∇r · u = 0

∂u

∂t
+
Ṙ

R
u = − 1

R

1

%̄
∇r p −

1

R
∇r φ

∇2
r φ = 4 π GR2 %̄ δ

(15.6)
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These equations govern the dynamics of small density fluctuations in a perfect fluid
for an expanding background cosmology without cosmological constant.

In the linear regime, density fluctuations on different scales evolve independently. Thus
it is useful to define Fourier–transformed quantities in the following way:

δ (x, t) =
∑
k

δk (t) eik·x

δk (t) =
1

V

∫
δ (x, t) e−ik·x d3x

If the pressure p is a function of the density % alone, it can be written as

p = p (%̄) +
dp

du
%̄ δ = p (%̄) + c2

s %̄ δ

with the sound speed cs.

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 15. STRUCTURE FORMATION IN THE UNIVERSE Page 523

Then the linearized equations (15.6) can be combined to give the linear perturbation
equation

d2δk
dt2

+ 2
Ṙ

R

dδk
dt
−

(
4πG%̄ −

(
c2
sk

R

)2
)
δk = 0 (15.7)

which is a wave equation for the perturbation δk.

The time evolution of the scale factor R(t) is governed by the Friedmann equations,
e.g. the solutions for an Einstein–de-Sitter universe and an empty universe are

Ωm = 1 Λ = 0: R =
(

3
2 H0 t

)2/3

Ωm → 0 Λ = 0: R = H0 t
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We consider growing fluctuations for which the gravitational attraction is much stronger
than the pressure force, i.e.

4πG%̄ �
(
c2
sk

R

)2

In these cases the linear perturbation equation can be written as

d2δk
dt2

+
4

3 t

dδk
dt
− 2

3 t2
δk = 0 (Ω = 1,Λ = 0)

d2δk
dt2

+
2

t

dδk
dt

= 0 (Ω→ 0,Λ = 0)

with the non-decaying solutions

δ+
k ∝ t2/3 ∝ R ∝ (1 + z)−1 (Ω = 1,Λ = 0)
δ+
k = const. (Ω→ 0,Λ = 0)

These solutions are valid in the matter–dominated epoch (i.e. z < 104).
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For adiabatic fluctuations and strong coupling between photons and baryons
(z > 1500), the perturbations of the baryonic density obey the relation

δB =
∆%B
%̄B

' 3
∆T

T

Thus at the time of recombination (z ' 1500), we have

∆T

T
' 10−5 ⇒ δB < 5 · 10−5

and thus we would expect

δB (t = t0) < 0.1

for the amplitude of baryonic fluctuations today, in contrast to the large inhomo-
geneities observed in the local universe!

We need dark matter to form the structures observed today!
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Structure Formation with Dark Matter

In this case we have to consider the wave equations for the fluctuations in the baryonic
and the dark matter component. If the dark matter is non-baryonic, then the fluctua-
tions in the two components are described by two wave equations, coupled by the
gravitational interaction only:

d2δB
dt2

+ 2
Ṙ

R

dδB
dt

= A %̄B δB + A %̄DM δDM (15.8)

d2δDM
dt2

+ 2
Ṙ

R

dδDM
dt

= A %̄DM δDM + A %̄B δB (15.9)

with A = 4πG for the matter–dominated case, and A = 32πG/3 for the radiation–
dominated case. In the approximation

ΩB � ΩDM ' 1

the second equation (15.9) reduces to a simple wave equation with the solution

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 15. STRUCTURE FORMATION IN THE UNIVERSE Page 527

δDM (z) = δDM (0) (1 + z)−1 = δDM (0)R

Inserting this solution into the wave equation (15.8) for the baryonic component yields

d2δB
dt2

+ 2
Ṙ

R

dδB
dt

= A %̄DM δDM (0)R

(using %̄B � %̄DM ). Furthermore, for a flat universe we have

1 ' ΩDM =
8πG%̄DM

3H2
0

and R =

(
3

2
H0 t

)2/3

and thus the differential equation for the baryonic fluctuations can be written as

R3/2 d

dR

(
R−1/2 dδB

dR

)
+ 2

dδB
dR

=
3

2
δDM (0)
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with the solution

δB = δDM (0) (R + κ)

= δDM (z) (1 + z)

(
1

1 + z
+ κ

)
(κ = const.). One interesting solution can be obtained by setting

κ ≡ − 1

1 + zN
,

yielding

δB (z) = δDM (z)

(
1 − 1 + z

1 + zN

)
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This means that

z → zN ⇒ δB → 0

z � zN ⇒ δB ' δDM

Thus the baryonic fluctuations can be very small at a redshift of, say, zN ≈ 1000,
whereas the fluctuations in the dark matter component have a finite amplitude at this
time. At z � zN , the baryonic fluctuations have the same amplitude as the dark matter
perturbations.

Dark matter makes galaxy formation possible!
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The evolution of baryonic and radiative perturbations

(From Longair, Galaxy Formation, Springer-Verlag 1998)

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 15. STRUCTURE FORMATION IN THE UNIVERSE Page 531

The evolution of baryonic and dark matter perturbations

(From Longair, Galaxy Formation, Springer-Verlag 1998)
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15.2 Non-linear Growth: The Spherical Collapse Model

So far, we have only discussed the linear regime of structure formation in which the
density contrast δ is very small: δ � 1.

To get some insight into the non-linear stages of the collapse of over-dense regions,
we consider the simplified case of a homogeneous over-dense region with spherical
geometry. As explained above, the equation of motion for the sphere is identical to the
equation of motion for the universe, i.e. Friedmann’s equation

Ṙ2
s =

8πG%s,0
3

1

Rs
− c2

R2
c,s,0

Using Ωs,0 = (8πG%s,0)/(3H2
0) and H2

0(Ωs,0 − 1) = c2/R2
c,s,0 this can be re-written:

Ṙ2
s = Ωs,0H

2
0

1

Rs
− H2

0

(
Ωs,0 − 1

)
(15.10)
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The solution of this equation can be parametrized as follows

Rs = a
(
1 − cos θ

)
t = b

(
θ − sin θ

)
with the constants a and b given by

a =
Ωs,0

2(Ωs,0 − 1)
b =

Ωs,0

2H0(Ωs,0 − 1)3/2

For Ωs,0 = 2 we thus have

a = 1 and b =
1

H0

and the radius Rs,0 = 1 is reached at θ = π/2, t0 = 0.57H−1
0 .
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The solution of the spherical collapse model has the following interesting properties:

The expansion ceases at θ = θmax = π. At this turn around we have

Rs,max =
Ωs,0

Ωs,0 − 1
= 2 (Ωs,0 = 2)

tmax =
πΩs,0

2H0(Ωs,0 − 1)3/2
=

π

H0
(Ωs,0 = 2)

Furthermore, the ratio of the sphere’s density %s at tmax and the density of a back-
ground universe (taken to be Ωm = 1) can be calculated according to(

%s
%̄

)
tmax

=
%̄Ωs,0

%̄

(
Rs (tmax)

R (tmax)

)3

=
Ω−2
s,0 (Ωs,0 − 1)3[(

3
2H0tmax

)2/3
]−3

Inserting the expression for tmax yields

(
%s
%̄

)
tmax

=

(
3

4
π

)2

' 5.55
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Thus, by the time the perturbed sphere has stopped expanding, its density is al-
ready 5.55 times greater than the background density.
Note that this argument is valid both for a whole universe with Ωm > 1 and for an
over-dense region within a universe with Ωm = 1.
Note also that the time t0 can be chosen arbitrarily, and the calculation is valid at all
times. This means that an over-dense spherical region always has a density 5.55
times higher than the background at turn around.

Neglecting the growing pressure, the perturbed region collapses to a point after
t = 2tmax. If we assume that this is equal to the formation epoch for the virialized
object (e.g. the galaxy), then the redshifts zmax of the turn around and zform of the
formation of the galaxy are related by

1 + zmax
1 + zform

=
R (2tmax)

R (tmax)
= 22/3 ' 1.59 (Ωm = 1)

E.g.: zmax ' 10 ⇒ zform ' 6
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The evolution of the ra-
dius of the perturbation
in the spherical collapse
model
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In reality, density perturbations are not perfectly spherical, leading to condensa-
tions on smaller scales and thus violent relaxation during the collapse.
The radius of the virialized region can be deduced from the virial theorem:

E = E (tmax) = T + Φ = Φmax = −GM
2

Rmax

E = E (tvir) =
1

2
Φvir

Thus we have

− GM
2

Rmax
= − 1

2

GM 2

Rvir

or, equivalently,

Rvir =
1

2
Rmax ⇒ %vir = 8 %max (15.11)

The density at virialization is 8 times that at turn around!
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Thus the density of a virialized region is at least 44 times higher than
the mean background density at turn around.
Note: Dissipation in the baryonic component can lead to an en-
hanced collapse relative to the dark matter component.

From this we can derive a limit on the redshift of formation of galaxies and clusters:

%vir > 5.55 · 8 · %̄0 ·
(
1 + zmaz

)3

According to the considerations above, the density %vir is the density of the dark
matter component. Using (1 + zmax) ' 1.59(1 + zform) we can conclude

%vir > 180 %̄0

(
1 + zform

)3
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Non-linear evolution of density perturbations

(From Padmanabhan, Structure formation in the universe, Cambridge 1993)
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Examples

1. The formation redshift of the Milky Way:
For the Milky Way’s dark matter halo we have

MDM ≈ 3 · 1011 M�
RDM ≈ 50 kpc

}
⇒ %DM ≈ 4 · 10−26 g cm−3 (Milky Way)

The background density of the universe is %̄0 = 1.88 · 10−29 h2 Ωm g cm−3. Thus:

zmax < 5

zform < 2.5

2. The formation redshift of a typical cluster of galaxies:
For a typical cluster of galaxies, the density of the dark matter halo is

%DM '
MDM

4π/3 R3
DM

' σ2R/G

4π/3 R3
=

4π

3G

σ2

r2

(virial theorem; RDM ∼ R).
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In more appropriate units:

%DM ≈ 7 · 10−26 g cm−3

(
σ

1000 km/s

)2 (
R

Mpc

)−2

Virgo cluster: R ' 1.5 Mpc, and σ ' 600 km s−1. Thus:

%DM ≈ 10−26 g cm−3 (Virgo cluster)

which leads to

zmax < 2.5

zform < 1
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The general equations for the radius r and the velocity dispersion σ in the spherical
collapse model are

r ' 258 kpc
(
1 + zform

)−1
(

M

1012M�

)1/3

h
−2/3
50

σ ' 100
km

s

(
1 + zform

)1/2
(

M

1012M�

)1/3

h
1/3
50

Remember that all considerations developed above are only valid, if perturbations on
a given scale exist. We will discuss the influence of the type of dark matter on the
structures formed in the next section.

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 15. STRUCTURE FORMATION IN THE UNIVERSE Page 543

Relation between halo
over-density and formation
redshift from numerical
simulations

(White, 1996, in: Gravita-
tional dynamics, Cambridge
University Press)
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15.3 Different Types of Dark Matter

The spatial distribution of matter in the universe depends strongly on the nature of the
dark matter particles.

Hot Dark Matter (e.g. low-mass neutrinos) do not form small structures, since a large
mass (> 1014M�) is needed to keep these particles gravitationally bound.

Cold Dark Matter on the other hand preferably forms structure on small scales. Larger
objects are formed by merging of smaller sub-units (a process called hierarchical
clustering ).

The amount of structure on different scales is measured by the power spectrum
P (k) (remember that we have defined the Fourier transform δk of the density contrast
in terms of the co-moving wave number k ≡ 2π/λ):

P (k, t) ≡ |δk (t)|2 (15.12)

Measurements of the power spectrum disfavour a neutrino–dominated universe.
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(From Longair, Galaxy Formation, Springer-Verlag 1998)
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The power spectrum derived from several galaxy surveys

(From Einasto et al., 1999, ApJ, 519, 441)
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15.4 N-Body Simulations

Analytic approximations of the spherical collapse yield rough estimates of the time
scales and the density of the dissipation-less dark matter component. To understand
the structure and the flattening of collapsing regions, and the tidal forces acting on
nearby regions, one has to do numerical simulations .

The dark matter component is relatively easy to model, since it is governed by
gravitational interaction only.

Simulations of the behaviour of the baryonic component (including cooling, star
formation, heating, . . . ) is much more complicated.

The following simulations were done by the Virgo Consortium.
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Axial ratios of haloes in CDM simulations

(From Frenk et al., 1988, ApJ, 327, 507)
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Number of haloes per unit volume and per unit logarithmic mass interval

(From Frenk et al., 1988, ApJ, 327, 507)
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Flat circular velocity curves in CDM simulations

(From Frenk et al., 1988, ApJ, 327, 507)
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Luminosity–circular velocity relation and mass-to-light ratios

(From Frenk et al., 1988, ApJ, 327, 507)
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15.5 Angular Power Spectrum of CMB Fluctuations

The COBE (Cosmic Background Explorer) satellite detected temperature fluctuations
in the Cosmic Microwave Background (CMB), shown on page 557. These fluctuations,
measured on angular scales of θ ∼ 7◦, have typical amplitudes of

∆T

T
' 10−5

The temperature fluctuations in the CMB are connected to density fluctuations at the
epoch of recombination by three physical processes:

On large angular scales (θ ∼ 10◦) the dominant source of fluctuations is the Sachs–
Wolfe effect , simply describing the fact that photons lose (or gain) energy when
they escape from over-dense (or under-dense) regions (gravitational redshift).

On intermediate scales (θ ∼ 1◦) the baryonic perturbations oscillate, which can be
observed as acoustic peaks in the angular spectrum of CMB fluctuations.
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On small angular scales (θ < 1◦) the oscillations are damped, mainly by the process
called Silk damping (photon diffusion suppresses small-scale perturbation).

It turns out that the form of the angular power spectrum is strongly dependent on cos-
mological parameters. The CMB fluctuations is usually expressed in terms of spherical
harmonics

∆T

T
(θ, ϕ) =

∞∑
l=0

+l∑
m=−l

alm Ylm (θ, ϕ)

The angular power spectrum is then defined as follows:

Cl =
1

2l + 1

∑
m

alm a
∗
lm = 〈|alm|2〉
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Temperature fluctuations in the Cosmic Microwave Background as measured by the
COBE satellite.
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As already explained, COBE could measure the amplitude on large angular scales.

When the importance of the angular spectrum of CMB fluctuations for the measure-
ment of cosmological parameters was realized, new satellite missions like Planck or
MAP.

Furthermore, balloon experiment are carried out. Recently published results of the
BOOMERANG (Balloon Observations Of Millimetric Extragalactic Radiation And Geo-
physics) suggest a flat universe.
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(From Longair, Galaxy Formation,
Cambridge 1993)
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(From Hu, 2000, Nature, 404, 939)
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The Boomerang map
of the CMB

(de Bernardis et al.,
2000, Nature, 404, 955)
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The angular power spectrum of CMB fluctuations

(From de Bernardis et al., 2000, Nature, 404, 955)
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Constraints on Ωm and ΩΛ from CMB fluctuations

(From de Bernardis et al., 2000, Nature, 404, 955)
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