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12.1 Selection Criteria for Clusters and Groups

12.1.1 Abell’s Catalog of Rich Clusters (1958)

Abell’s criteria:

> 50 cluster members in the magnitude range [m3,m3 + 2] (with the magnitude m3

of the 3rd brightest galaxy) and within the radius RAbell = 1.7
(1+z) '̂ 3h−1

50 Mpc.

Redshift range: 0.02 < z < 0.20

Sorted into ’richness classes’ according to number of galaxies N and density.

The redshift was usually not measured, but determined from the apparent magni-
tude of the brightest cluster galaxies.

The clusters were found using the Palomar Sky Survey
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Richness class R N Number of clusters in the
complete northern sample

0 30− 49 ≥ 103

1 50− 79 1224
2 80− 129 383
3 130− 199 68
4 200− 299 6
5 ≥ 300 1
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12.1.2 Tully’s Nearby-Galaxy-Catalog

This catalog uses the following group definitions:

Obtain the galaxy density around a given galaxy,
add the luminosities up to the limiting magnitude,
and extrapolate to the standard luminosity function

A group of galaxies (gravitationally bound) is found if:

luminosity density: jG > 2.5 · 109 L�
Mpc3

An association of galaxies (not gravitationally bound) is found if:

jA > 2.5 · 108 L�
Mpc3

mean luminosity density obtained from a large volume (using the APM survey):

j ' 108 L�
Mpc3
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12.1.3 The Rood-Sastry Classification System

The original Rood-Sastry (1971) classification system is based on the nature and
distribution of the ten brightest cluster galaxies. Basically, the six Rood-Sastry (RS)
classes are defined as follows:

cD : the cluster is dominated by a central cD galaxy (e.g. A2199).
B : binary - the cluster is dominated by a pair of luminous galaxies (e.g.

A1656 (Coma))
L : line - at least three of the brightest galaxies appear to be in a straight

line (e.g. A426 (Perseus))
C : core - four or more of the ten brightest galaxies form a cluster core

with comparable galaxy separations (e.g. A2065 (Corona Borealis))
F : flat - the brightest galaxies form a flattened distribution on the sky

(e.g. A2152 (Hercules))
I : irregular - the distribution of brightest galaxies is irregular, with no

obvious center or core (e.g. A400)
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12.2 Nearby Galaxy Clusters

12.2.1 Virgo Cluster

nearest large galaxy cluster with more than
2000 galaxies brighter than MB ' −14 (LB ∼ 107.8L�)

Distance ∼ 15− 20Mpc (dependent on H0)

Extend ∼ 10◦ =̂ 3 Mpc× 3 Mpc

Irregular cluster, densest regions dominated by ellipticals

Velocity Dispersion of Galaxies about 600 km/s
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Overview of the Virgo Cluster
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Virgo Cluster

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 12. CLUSTERS AND GROUPS OF GALAXIES Page 429

Virgo Cluster
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12.2.2 Coma Cluster

One of the most luminous clusters known

Distance ∼ 100 Mpc (dependent on H0)

Regular cluster with probably sub-cluster merging from SW

Dominated by ellipticals and S0s, two central cDs and one in SW sub-cluster

Velocity Dispersion of Galaxies about 1000 km/s

Strong X-ray source
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Coma Cluster
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Coma Cluster
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12.3 Luminosity Functions

Luminosity Function for Virgo Galaxies:

see: Sandage et al. (1985) AJ, 90, 1759
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Luminosity Function for Virgo Galaxies:

see: Sandage et al. (1985) AJ, 90, 1759
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Luminosity Function for Virgo Galaxies:

see: Sandage et al. (1985) AJ, 90, 1759
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Virgo vs Coma Luminosity Functions:

see: Sandage (1990) in Clusters of Galaxies Cambridge University Press
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Nearby galaxy groups from Ferguson, Sandage (1991) AJ, 101, 765
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see: Sandage (1990) in Clusters of Galaxies Cambridge University Press
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Morphology-Density Relation:

see: Binggeli et al. (1987) AJ, 94, 251
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Morphology-Radius Relation:

see: Ferguson, Sandage (1989) ApJ, 346, L53
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see: Giovanelli et al. (1986) ApJ, 300, 77
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12.4 Characteristic Time Scales for Groups and Cluster

Crossing time:

tcr '
R

σcl
' 109yrs

(R/Mpc)

σcl/1000km/s

Relaxation time:
Two body relaxation:

trelax '
0.1Ntcr
f 2 ln Λ

(see: Binney/Tremaine)

f =
N ·m
Mtot

' 0.1 (90% dark matter)

ln Λ ' 3 (Coulomb-Logarithm)

Relaxation of the galaxies: N ' 300 . . . 3000

⇒ trelax ' 1012 . . . 1013yrs

Relaxation of sub-clumps: N ' 3 . . . 30

trelax ' 1010 . . . 1012yrs
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Violent Relaxation (e.g. merging of galaxy clusters of similar size)

tviolent ' 5tcr ' 5 · 109yrs
(R/Mpc)

(σcl/1000km/s)

Dynamical friction scale:
Assume a massive object moving between numerous less massive objects.
⇒ The lighter objects are focused in the wake of the massive object and cause its
deceleration.
For a spherical system of background particles with a radially constant velocity
dispersion and a massive body moving with v ∼ 2σ the deceleration is:

dv

dt
' 2

GM

r2

with the mass of the body M and the distance from the center r.
Defining tfriction : v

tfriction
= dv

dt yields:

tfriction ' 5 · 1013yrs
(v/(1000km/s)) · (r/Mpc)2

M/(1010M�)

⇒ irrelevant for galaxies (maybe except the most massive ones), but not for sub-
clumps in clusters.
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12.5 X-Ray Gas in Galaxy Clusters

Coma cluster
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12.5.1 Properties of the X-Ray Gas

The first complete sky survey in X-Rays with the Uhuru satellite showed that
numerous galaxy clusters have an LX ∼ 1043 − 1045 erg

s .

The spectra are characteristic of the Bremsstrahlung of a ∼ 108K hot gas.

dP

dV dE
= 10−11T−1/2e

−E
kT NeNZZ

2g

[
erg

cm3 s erg

]

g ∼ ln
T

E
for E � kT

g ∼
(
E

kT

)−0.4

for E ' kT

for several ions NeNZZ
2 is replaced by

∑
NeNZZ

2.
For cosmical abundances applies, integrated over the energy:

dP

dV
= 2.410−27T−1/2N 2

e

[ erg

cm3 s

]
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Cooling time of the plasma:

tcool =
3NekT

dP
dV

' 1011

Ne
T 1/2 [s]

Total luminosity for T ' 5 · 107 K (' 5 keV):

L =

∫
dP

dV
dV ' 10−23

∫
N 2
e dV

[erg
s

]
E.g. the Coma cluster:

L ' 1044erg/s (12.1)
V ' (1Mpc)3 (12.2)

⇒ ne ' 10−3cm−3 (12.3)
τcool ' 1010yrs (smaller at center) (12.4)
Mgas ' 1013M� (12.5)
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The following correlations are known:

Central galaxy density higher with higher LX

Fraction of spirals lower with higher LX

Temperature ∼ LX and of order 108K

Gas metallicity lower with higher T and typically 1/3 of solar or lower

Gas mass to galaxy mass ratio increases with T up to 5 or more
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12.5.2 Cooling Flows

The cooling time in the cluster is longer than the Hubble time, this does not apply
in the centers, where ne ∼ 10−2cm−3

⇒ tcool ∼ 109yrs

Approximations showed that up to

Ṁ = 1000
M�
yr

of gas can cool out of the X-ray halo. This gas can form stars, and indeed many
cD galaxies show filaments of gas emission and blue colours in the central region
(i.e. young massive stars).

During the Hubble time a complete cD galaxy could be formed by cooling flows,→
possible formation scenario for the cD galaxies.
(Alternatively: Formation by merging of cluster galaxies).
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12.6 Masses of Galaxy Clusters

12.6.1 Masses from X-Ray Halo Equilibrium

Similar to the approach used for elliptical galaxies, temperature and density profiles
can be used to determine the gravitational acceleration and so thus the mass of the
galaxy cluster:

Assuming hydrostatic equilibrium and spherical symmetry:

dPgas
dr

= −GMtot(< r)ρgas(r)

r2

and using the ideal gas equation: P = ρ
µmH

kT yields:

GMtot(< r)

r
= − kT

µmH

(
d ln ρgas
d ln r

+
d lnT

d ln r

)
︸ ︷︷ ︸

' const ' −2...−1

⇒ allows in principal a good determination of the mass (gas has no anisotropy like
galaxies but problems may be substructures and nonuniform temperatures).
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12.6.2 Masses from Gravitational Lensing

Galaxy clusters act as gravitational lenses on even more distant background galax-
ies.

Shape and radial trend of the weak shear and strong lensing effects yield the clus-
ter mass distribution independent of the nature of the mass and therefore allow
reliable total mass estimates including the dark matter.

Hubble Space Telescope images provide excellent shear maps, though only for
small fields. Ground-based results get better and better but require very good
observing conditions.

This technique has become one of the most important methods for the mass de-
termination of galaxy clusters.
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HST image of CL0939+4713, C. Seitz (1996) PhD Thesis
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Reconstruction of the projected mass density of CL0939+4713 with weak shear
analysis, see: C. Seitz (1996) PhD Thesis
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Galaxy Cluster Cl0024+1645, strong lensing reconstruction (left, courtesy S. Seitz) of HST image (right, Colless et al.); light blue = caustic structure,

bold green = critical lines of ’infinite’ amplification, squares = observed positions of multiple imaged source (A,B,C,D,E in color image), yellow crosses

= predicted position of the lens model, yellow circle = position of source in source plane, red crosses = mass centers used for the lens model. The

caustics are obtained by mapping the critical lines into the source plane.
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The radial mass profiles of the galaxy
cluster Abell 2163 determined from
the X-ray and lensing analysis. The
triangles display the total mass profile
determined from the X-ray observa-
tions. The solid squares are the weak
lensing estimates. The open squares
are the lensing estimates corrected
for the mean surface density in the
control annulus determined from the
X-ray data.

see: Squires et al. (1997) ApJ, 482, 648
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The two-dimensional mass profile of
the cluster Abell 2218

see: Squires et al. (1996) ApJ, 461,
572
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12.6.3 Typical Masses of Rich Clusters

total mass < 0.5Mpc gas mass < 0.5Mpc

Abell 85 2 · 1014M� 3.4 · 1013M�
Abell 1795 2.3 · 1014M� 3.6 · 1013M�
Abell 2255 3.3 · 1014M� 3.5 · 1013M�
Abell 2256 6.3 · 1014M� 4.1 · 1013M�

The mass of the gas can be up to five times the mass of the galaxies. However
galaxies and gas together only contribute about 20% of the total mass.
⇒ dark matter

M

L
of the clusters: 100 . . . 500

M�
L�

To reach the critical density needed for a flat universe M
L ∼ 1500 M�

L�,B
would be needed.

⇒ If clusters are representative, then the universe is open!
⇒ Ω . 0.25
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12.6.4 Typical Masses of Galaxy Groups

see: Tully (1987) ApJ, 321, 280
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