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11.1 Basics of Gravitational Lensing

One consequence of Einstein’s Theory of Relativity is that light rays are deflected by
gravity. Einstein calculated the magnitude of the deflection that is caused by the sun.
Since the potential and the velocity of the deflecting mass are small (v � c and Φ� c2)
the deviation angle is expected to be small as well. According to Einstein’s formula, a
light ray passing the surface of the Sun tangentially is deflected by 1.7”. This deflection
angle has in the mean time been confirmed with a very high accuracy (0.1 %).

For further information see also:

R. Narayan, M. Bartelman: Lectures on Gravitational Lensing; in:
Formation of Structure in the Universe
Edited by Avishai Dekel and Jeremiah P. Ostriker. Cambridge:
Cambridge University Press, 1999., p.360

Schneider, Ehlers, Falco: Gravitational Lenses
Springer Verlag
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The light path from the source to the observer can then be broken up into three distinct
zones:

1. Light travels from the source to a point close to the lens through unperturbed space-
time, since b� Dd.

2. Near the lens the light is deflected.

3. Light travels to the observer through unperturbed spacetime, since b� Dds.
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In a naive Newtonian approximation one would derive:

α =
vz
c

=
1

c

∫
dΦ

dz︸︷︷︸
∗

dt =
1

c2

∫
dΦ

dz
dl

*: acceleration in z direction; because the acceleration doesn’t depend on the energy
of the photons, gravitational lenses are achromatic.

This result differs only by a factor of two from the correct general relativistic result:

~α =
2

c2

∫
~∇⊥Φ dl G.R.

where the deflection angle α, written as vector ~α perpendicular to the light propagation
~l, is the integral of the potential gradient perpendicular to the light propagation.

For a point mass the potential can be written as:

Φ(l, z) =
−GM

(l2 + z2)1/2
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Therefore:
dΦ

dz
=

+GMz

(l2 + z2)3/2
(= ~∇⊥Φ)

After integration:

α =
2

c2

+∞∫
−∞

GMz

(l2 + z2)3/2
dl =

4GMz

c2

+∞∫
0

dl

(l2 + z2)3/2
=

4GMz

c2

[
l

z2(l2 + z2)1/2

]+∞

0

Thus the deflection angle α for a light ray with impact parameter b = z near the point
mass M becomes:

α =
4GM

c2b
=

2RS

b

where RS = 2GM
c2

is the Schwarzschild radius of the mass M, i.e. the radius of the
black hole belonging to the mass M.

Therefore for the sun (M� ' 2 · 1033 g ⇒ RS ' 3.0 km) we get a deflection angle α at
the Radius of the sun (' 700000km) of:

α�,R� ' 1.7′′
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In order to calculate the deflection angle α caused by an arbitrary mass distribution
(e.g. a galaxy cluster) we use the fact that the extent of the mass distribution is very
small compared to the distances between source, lens and observer:
∆l� Dds and ∆l� Dd

∆l
��

�	

~α(~ξ)
....................................................................................................................

DdDds

~ξ�
��
hhhhhhhhhhhhhhhhhh
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Therefore, the mass distribution of the lens can be treated as if it were an infinitely
thin mass sheet perpendicular to the line-of-sight. The surface mass density is simply
obtained by projection.

The plane of the mass sheet is called the lens plane . The mass sheet is characterized
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by its surface mass density ∑
(~ξ) =

∫
∆l

ρ(~ξ,~l) dl

The deflection of a light ray passing the lens plane at ~ξ by a mass element dm =∑
(~ξ′) d2ξ′ at ~ξ′ is:

dα =
4Gdm

c2|~ξ − ~ξ′|
To get the deflection caused by all mass elements, we have to integrate over the whole
surface. Doing this we must take into account that, e.g., the deflection caused by mass
elements lying on opposite sides of the light ray may cancel out. Therefore we must
add the deflection angles as vectors:

~α(~ξ) =
4G

c2

∫
(~ξ − ~ξ′)

∑
(~ξ′)

|~ξ − ~ξ′|2
d2ξ′

Special case: For a spherical mass distribution the lensing problem can be reduced
to one dimension. The deflection angle then points toward the center of symmetry and
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we get:

α(ξ) =
4GM(< ξ)

c2ξ

where ξ is the distance from the lens center and M(< ξ) is the mass enclosed within
radius ξ,

M(< ξ) = 2π

ξ∫
0

∑
(ξ′)ξ′ dξ′
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11.2 Lensing Geometry and Lens Equation

Important relations:

α̂ ·Dds = α ·Ds (11.1)

θ ·Ds = β ·Ds + α̂ ·Dds (11.2)

Note: The distances D are an-
gular diameter distances.
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Using relation 11.1 and 11.2 one obtains the so called lens equation:

β = θ − α = θ − Dds

Ds
α̂ (11.3)

The lens equation relates the real position (angle) of the source (without a lens) with
the position of the lensed image.

Important note: only angular distances are needed for deriving the lens equation. In
general, i.e. over cosmological distances: Dds 6= Ds −Dd.
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11.3 Einstein radius and critical surface density

Consider now a circularly symmetric lens with an arbitrary mass profile. Due to the
rotational symmetry of the lens system, a source, which lies exactly on the optical axis
(θ = α⇔ β = 0 ) is imaged as a ring. This ring is the so called Einstein ring :

β = 0  θ = α (11.4)

=
Dds

Ds
· α̂ (11.5)

=
Dds

Ds
· 4G

c2
· M(< ξ)

ξ
(11.6)

=
Dds

Ds
· 4πG

c2
· M(< ξ)

πξ2
ξ (11.7)

=
Dds

Ds
· 4πG

c2
· Σcr ·Dd · θ (11.8)

Therefore the critical surface density to observe an Einstein ring is:
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Σcr =
c2

4πG
· Ds

DdsDd
= 0.35

g

cm2

Ds · 1Gpc
Dds ·Dd

critical surface density

Note: The critical surface density depends only on the angular distances between
source, lens and observer.

The radius of the Einstein ring can be calculated using formula (11.6) and ξ = Ddθ:

θ2
E =

Dds

DsDd
· 4G

c2
·M<θE Einstein radius

where M<θE is the projected mass within θE.

If the surface mass density has the value Σcr and is constant in ξ, we get a ideal
convex lens. All light rays would then be focused in the point of observation:
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Σ = const = Σcr
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For a typical gravitational lens Σ decreases as a function of the radius.

Therefore only at a certain radius the condition for a circular image is fulfilled:
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Furthermore gravitational lenses are hardly ever spherically symmetric. For an ellipti-
cal mass distribution one observes only parts of the ring, the so called arcs.
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Examples of Einstein angles θE

1. Galaxy clusters:

typical mass: M ' 1014M�
typical distances: ' 1Gpc

This leads to:

θE ' 10′′
(

M

1013M�

)1/2(
D

Gpc

)−1/2

where D = Ds·Dd
Dds

.

Thus for massive galaxy cluster (M > 1014M� within a few hundreds of kpc) we
get observable angles in the order of ten arcsecs.

2. Stars (or similar objects) in the Milky Way:

θE ' 0.001′′
(
M

M�

)1/2(
D

10 kpc

)−1/2

Such a tiny angle cannot be directly observed, but sometimes it is possible to detect
the amplification it causes.
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11.4 Magnification by a point mass lens

Rewriting equation (11.3):

β = θ − Dds

Ds
α̂ = θ − Dds

Ds ·Dd
· 4GM

c2θ

using the Einstein radius we get the following equations:

β = θ − θ2
E

θ
(11.9)

with the two solutions:

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
(θ± > β !) (11.10)

Therefore every source is imaged twice by the point mass. One image lies inside, the
other outside the Einstein radius.
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Gravitational light deflection preserves surface brightness (Liouville’s theorem), but
gravitational lensing changes the apparent solid angle of a source. The total flux
received from a gravitationally lensed image of a source is therefore changed in pro-
portion to the ratio between the solid angle of the image and the source.
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For a circularly symmetric lens, the magnification factor is given by:

µ =
θ

β
· dθ
dβ

For a point mass lens we can use equation (11.9) and (11.10) to obtain the magnifica-
tion of the two images:

µ± =

[
1−

(
θE
θ±

)4
]−1

(11.11)

It is clear from equation (11.11) that the magnification of the image inside the Einstein
ring is negative. This means that this image has its parity flipped with respect to the
source.
N.B.: θ± → θE ⇒ µ→ 0
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11.5 Effective Lensing Potential

Let us define a scalar potential ψ(~θ) which is the appropriately scaled, projected New-
tonian potential of the lens.

ψ(~θ) =
Dds

DdDs

2

c2

∫
Φ(Dd

~θ, z) dz (11.12)

The gradient of ψ with respect to θ is the deflection angle:

~∇θψ = Dd
~∇ξψ =

Dds

Ds

~
α̂︷ ︸︸ ︷

2

c2

∫
~∇⊥Φ dz = ~α (11.13)

with
~∇⊥Φ = ~∇ξΦ(ξ, z) =

1

Dd

~∇θΦ(Ddθ, z) (11.14)

while the Laplacian is proportional to the surface mass density Σ
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~∇2
θψ =

2

c2

DdsDd

Ds

∫
~∇2
ξΦ dz =

2

c2

DdsDd

Ds

∫ (
~∇2 − ∂2

∂z2

)
Φ dz (11.15)

(
∫ +∞
−∞

∂2

∂z2Φ dz = ∂Φ
∂z

∣∣+∞
−∞ = 0, (the mass distribution is confined in a finite volume))

Therefore using ~∇2Φ = 4πGρ:

~∇2
θψ =

2

c2

DdsDd

Ds

∫
4πGρ dz =

8πG

c2

DdsDd

Ds
Σ(ξ) (11.16)

Furthermore using Σcr = c2

4πG ·
Ds

DdsDd
yields:

~∇2
θψ = 2

Σ(~θ)

Σcr
:= 2κ(θ) (11.17)

The surface mass density scaled by its critical value is called the convergence κ(θ).
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Since ψ satisfies the two dimensional Poisson equation ~∇2
θψ = 2κ, the effective lensing

potential can be written in terms of κ:

ψ(~θ) =
1

π

∫
κ(θ′) ln

∣∣∣~θ − ~θ′∣∣∣ d2θ′ (11.18)

The local properties of the lens mapping are described by its Jacobian matrix A:

A =
∂~β

∂~θ

(11.3)
=

∂

∂~θ

(
~θ − ~α(~θ

)
=

[
δij −

∂αi
∂θj

]
(11.19)

Using furthermore αi = ∂
∂θi
ψ we get:

A =

(
δij −

∂2ψ(~θ)

∂θi∂θj

)
Jacobian matrix (11.20)

The local solid-angle distortion due to the lens is given by the determinant of A. A
solid angle δβ2 of the source is mapped to the solid-angle element δθ2, and so the
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magnification is given by:
δθ2

δβ2
=

1

detA
= detM (11.21)

with the magnification tensor M .

Equation (11.20) shows that the matrix of second partial derivatives of the potential ψ
(the Hessian matrix of ψ) describes the deviation of the lens mapping from the identity
mapping. For convenience, we introduce the abbreviation:

∂2ψ(~θ)

∂θi∂θj
≡ ψij

Since the Laplacian of ψ is twice the convergence (see equation(11.17)) we have

κ =
1

2
(ψ11 + ψ22) =

1

2
tr ψij (11.22)

Two additional linear combination of ψij are important:

γ1(~θ) =
1

2
(ψ11 − ψ22) ≡ γ(~θ) cos

[
2Φ(~θ)

]
(11.23)

γ2(~θ) = ψ12 = ψ21 ≡ γ(~θ) sin
[
2Φ(~θ)

]
(11.24)
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These components (γ1(~θ), γ2(~θ)) are the components of the shear tensor .

With these definitions, the Jacobian matrix can be written as:

A =

convergence︷ ︸︸ ︷
(1− κ)

(
1 0
0 1

)
−

shear︷ ︸︸ ︷(
γ1 γ2

γ2 −γ1

)
= (1− κ)

(
1 0
0 1

)
− γ

(
cos(2Φ) sin(2Φ)
sin(2Φ) − cos(2Φ)

)

Convergence acting alone causes an isotropic focusing of light rays, leading to an
isotropic magnification of a source. The image is mapped onto an image with the
same shape but larger size. Shear introduces anisotropy (or astigmatism) into the
lens mapping.
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Illustration of the effects of convergence and shear of a circular source. Convergence
magnifies the image isotropically and shear deforms it to an ellipse.
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from Fort et al. (1994) ARAA, 5, 239
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see: Fort et al. (1994) ARAA, 5, 239
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Observation of weak shear , Bonnet et al. (1994) ApJ, 427, 83

Galaxies, Cosmology and Dark Matter Summer 2000



CHAPTER 11. GRAVITATIONAL LENSING Page 419

see: Peacock J.A.: Cosmological Physics, Cambridge University Press 1999
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